do you know what is a preservation theorem
play

Do you know what is a preservation theorem? Stage de M2, MPRI - PowerPoint PPT Presentation

0 Do you know what is a preservation theorem? Stage de M2, MPRI Aliaume Lopez 11 Juin 2019 Sylvain Schmitz Jean Goubault-Larrecq 1 Preservation Theorems Motivations Equivalence : Database Finite Model Evaluation of a query on an


  1. 0 Do you know what is a preservation theorem?

  2. Stage de M2, MPRI Aliaume Lopez 11 Juin 2019 Sylvain Schmitz Jean Goubault-Larrecq 1 Preservation Theorems

  3. Motivations

  4. Equivalence : Database Finite Model Evaluation of a query on an incomplete database corresponds to evaluation on a family of structures. 1. Existence of a universal model to answer certain answers is equivalent to a preservation theorem (Used in the Chase algorithm (Deutsch et al., 2008)). 2. Naïve evaluation of a query Q yields certain answers if and only if Q is monotone (Gheerbrant et al., 2014). 2 Database theory 101 Preservation theorem A monotone formula φ ∈ FO [ σ ] is equivalent to a simple formula ψ .

  5. 1. Existence of a universal model to answer certain answers is evaluation on a family of structures. equivalent to a preservation theorem (Used in the Chase algorithm (Deutsch et al., 2008)). 2. Naïve evaluation of a query Q yields certain answers if and only if Q is monotone (Gheerbrant et al., 2014). 2 Database theory 101 Preservation theorem A monotone formula φ ∈ FO [ σ ] is equivalent to a simple formula ψ . Equivalence : Database ↔ Finite Model Evaluation of a query on an incomplete database corresponds to

  6. Finite models and logics Motivations

  7. 3 1 y y 2 3 A good example is far better than a good precept. Finite structures over σ ≜ {• , , } D ≜ { 1 , 2 , 3 } � • � ≜ { 2 } � ≜ { ( 1 , 2 ) , ( 3 , 3 ) } � � ≜ { ( 1 , 3 ) , ( 3 , 1 ) } � Logical formulas FO [ • , ] , φ := ∃ x .φ | φ ∧ φ | ¬ φ ∃ x . ∀ y . ¬ (( • y ) ∧ ¬ ( x y )) | • x | x | x

  8. 4 x 5 Figure 1 – Locality of FO x 9 x 8 x 7 x 6 x 4 x d x 3 x 2 x 1 x 0 The Bible tells us to love our neighbors, and also to love our enemies; probably because generally they are the same people. ∃ x . ∀ y . ( x y ) = ⇒ ( • y ) B ( x 0 , 1 )

  9. 4 x 5 Figure 1 – Locality of FO x 9 x 8 x 7 x 6 x 4 x d x 3 x 2 x 1 x 0 The Bible tells us to love our neighbors, and also to love our enemies; probably because generally they are the same people. ∃ x . ∀ y . ( x y ) = ⇒ ( • y ) B ( x 0 , 1 )

  10. Induced substructure Strong Injective Homomorphism Substructure Injective homomorphism Homomorphism Homomorphism 5 Chaos is merely order waiting to be deciphered. Preorders over finite structures ⊆ i ⊆ →

  11. Figure 2 – An investment in knowledge pays the best interest. 6 Orders on finite structures ̸⊆ i , ⊆ , → ̸⊆ i , ̸⊆ , → ⊆ i , ⊆ , →

  12. 7 Stone Duality …Lift, Lift, Lift! φ ≜ ∃ x . deg( x ) ≥ 3 Upwards closed ⊆ i ⊆ i ⊆ i Figure 3 – Finite graphs encoded using Σ ≜ { E }

  13. 7 Stone Duality …Lift, Lift, Lift! φ ≜ ∃ x . deg( x ) ≥ 3 Upwards closed ⊆ i ⊆ i ⊆ i Figure 3 – Finite graphs encoded using Σ ≜ { E }

  14. 7 Stone Duality …Lift, Lift, Lift! φ ≜ ∃ x . deg( x ) ≥ 3 Upwards closed ⊆ i ⊆ i ⊆ i Figure 3 – Finite graphs encoded using Σ ≜ { E }

  15. 7 Stone Duality …Lift, Lift, Lift! φ ≜ ∃ x . deg( x ) ≥ 3 Upwards closed ⊆ i ⊆ i ⊆ i Figure 3 – Finite graphs encoded using Σ ≜ { E }

  16. 7 Stone Duality …Lift, Lift, Lift! φ ≜ ∃ x . deg( x ) ≥ 3 Upwards closed ⊆ i ⊆ i ⊆ i Figure 3 – Finite graphs encoded using Σ ≜ { E }

  17. Preservation theorems Motivations

  18. 8 EFO EPFO Ordre Fragment Link between syntax and semantics Known results Str( σ ) FinStr( σ ) Łós-Tarski ✓ ⊆ i ✗ Tait (1959) ⊆ Tarski-Lyndon ✓ EPFO ̸ = ✗ Ajtai and Gurevich (1994) → H.P.T. ✓ ✓ Rossman (2008)

  19. 8 EFO EPFO Ordre Fragment Link between syntax and semantics Known results Str( σ ) FinStr( σ ) Łós-Tarski ✓ ⊆ i ✗ Tait (1959) ⊆ Tarski-Lyndon ✓ EPFO ̸ = ✗ Ajtai and Gurevich (1994) → H.P.T. ✓ ✓ Rossman (2008)

  20. 8 EFO EPFO Ordre Fragment Link between syntax and semantics Known results Str( σ ) FinStr( σ ) Łós-Tarski ✓ ⊆ i ✗ Tait (1959) ⊆ Tarski-Lyndon ✓ EPFO ̸ = ✗ Ajtai and Gurevich (1994) → H.P.T. ✓ ✓ Rossman (2008)

  21. Preservation theorems do not relativise to subclasses. 9 Relativisation Lemma

  22. Classical results Motivations

  23. Proof Compactness M . Par l’absurde, cette théo- traire une théorie finie incohérente. Or, T est incohérente. Donc en utilisant le théo- semble fini incohérent. Comme T est cohérente, on a donc une 10 , ce qui est absurde. Ainsi, M possède un modèle N , par construction M i . N , N donc M T , et Par la suite, rème de compacité, on déduit que celle-ci possède un sous en- formule dans T qui est équivalente à . donc M est incohérente. . Ainsi, . Considérons T et universelle . Par construction, T . Par construction, cela veut dire que Soit M un modèle de T , montrons que M est un modèle de Pour cela, considérons rie est incohérente, le théorème de compacité permet d’en ex- M est stable par conjonction finie et est cohérente. Ainsi, il existe une formule M telle que Proof of a classical result Łós-Tarski's theorem Let φ be a closed formula, preserved under induced substructure. There exists a closed existential formula ψ such that φ ⇐ ⇒ ψ .

  24. 10 rie est incohérente, le théorème de compacité permet d’en ex- rème de compacité, on déduit que celle-ci possède un sous en- conjonction finie et est cohérente. Ainsi, il existe une formule Proof of a classical result Łós-Tarski's theorem Let φ be a closed formula, preserved under induced substructure. There exists a closed existential formula ψ such that φ ⇐ ⇒ ψ . Proof Compactness Considérons T ∀ ≜ { θ | φ ⊢ θ et θ universelle } . Par construction, φ ⊢ T ∀ . Soit M un modèle de T ∀ , montrons que M est un modèle de φ . Pour cela, considérons { φ } ∪ Diag( M ) . Par l’absurde, cette théo- traire une théorie finie incohérente. Or, Diag( M ) est stable par θ ∈ Diag( M ) telle que { θ, φ } est incohérente. Par construction, cela veut dire que φ ⊢ ¬ θ . Ainsi, ¬ θ ∈ T ∀ , et donc M | = ¬ θ , ce qui est absurde. Ainsi, { φ }∪ Diag( M ) possède un modèle N , par construction M ⊆ i N , N | = φ donc M | = φ . Par la suite, {¬ φ }∪ T ∀ est incohérente. Donc en utilisant le théo- semble fini incohérent. Comme T ∀ est cohérente, on a donc une formule dans T ∀ qui est équivalente à φ .

  25. 11 Involved counter-example The sad truth The family S of simple planar graphs using only two labels does not satisfy a preservation theorem for ⊆ i . Adaptation Can be (using some tricks) adapted to ⊆ .

  26. 12 Figure 4 – The graph G 5 Hide this family that I shall not see

  27. Two sides of a same coin. Motivations

  28. 13 First example : Finite paths Lemma The family P = { P k | k ∈ N ≥ 1 } of finite paths satisfies a preservation theorem for ⊆ i .

  29. 14 . . . First example : Finite paths Monotone ⊆ i ✓ ⊆ i ✗ ⊆ i ✗ ⊆ i ✗ ⊆ i ✗ Figure 5 – Evaluation of a monotone formula φ over P

  30. 14 . . . First example : Finite paths Monotone ⊆ i ✓ ⊆ i ✗ ⊆ i ✗ ⊆ i ✗ ⊆ i ✗ Figure 5 – Evaluation of a monotone formula φ over P

  31. Notes (i) The order i is total and well founded over (1) (ii) No property of FO were ever used! 15 First example : Finite paths Lemma A formula φ preserved under ⊆ i on P is equivalent to ∃ x 1 , . . . , ∃ x k . x 1 ̸ = x 2 ̸ = · · · ̸ = x k

  32. (1) (ii) No property of FO were ever used! 15 First example : Finite paths Lemma A formula φ preserved under ⊆ i on P is equivalent to ∃ x 1 , . . . , ∃ x k . x 1 ̸ = x 2 ̸ = · · · ̸ = x k Notes (i) The order ⊆ i is total and well founded over P

  33. Application U Figure 6 – Every non empty upwards closed set U has a non empty finite basis of (finite) minimal elements. preservation (2) 16 First example : Generalisation Well Quasi Order / wqo (e.g. Kruskal, 1972) B

  34. Application U Figure 6 – Every non empty upwards closed set U has a non empty finite basis of (finite) minimal elements. preservation (2) 16 First example : Generalisation Well Quasi Order / wqo (e.g. Kruskal, 1972) B

  35. U Figure 6 – Every non empty upwards closed set U has a non empty finite basis of (finite) minimal elements. preservation (2) 16 First example : Generalisation Well Quasi Order / wqo (e.g. Kruskal, 1972) B Application wqo = ⇒

  36. 17 Second example : Finite cycles Lemma The family C = { C k | k ∈ N ≥ 3 } of finite cycles satisfies a preservation theorem for ⊆ i .

  37. 18 Second example : Finite cycles Locality ̸⊆ i ̸⊆ i ̸⊆ i ̸⊆ i ̸⊆ i · · · i ̸⊇ i ̸⊇ i ̸⊇ i ̸⊇ i ̸⊇ ✗ ✗ ✓ ✓ ✓ ⊆ i Figure 7 – Evaluation of a monotone formula φ over C

  38. 18 Second example : Finite cycles Locality ̸⊆ i ̸⊆ i ̸⊆ i ̸⊆ i ̸⊆ i · · · i ̸⊇ i ̸⊇ i ̸⊇ i ̸⊇ i ̸⊇ ✗ ✗ ✓ ✓ ✓ ⊆ i Figure 7 – Evaluation of a monotone formula φ over C

  39. 18 Second example : Finite cycles Locality ̸⊆ i ̸⊆ i ̸⊆ i ̸⊆ i ̸⊆ i · · · i ̸⊇ i ̸⊇ i ̸⊇ i ̸⊇ i ̸⊇ ✗ ✗ ✓ ✓ ✓ ⊆ i Figure 7 – Evaluation of a monotone formula φ over C

  40. 18 Second example : Finite cycles Locality ̸⊆ i ̸⊆ i ̸⊆ i ̸⊆ i ̸⊆ i · · · i ̸⊇ i ̸⊇ i ̸⊇ i ̸⊇ i ̸⊇ ✗ ✗ ✓ ✓ ✓ ⊆ i Figure 7 – Evaluation of a monotone formula φ over C

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend