distributional solution theory of linear daes
play

Distributional solution theory of linear DAEs Stephan Trenn - PowerPoint PPT Presentation

Distributional solution theory of linear DAEs Stephan Trenn Institut f ur Mathematik, Technische Universit at Ilmenau GAMM 2008, Bremen, 01.04.2008, 11:40 - 12:00 Motivation Piecewise smooth distributions Solution theory: First results


  1. Distributional solution theory of linear DAEs Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau GAMM 2008, Bremen, 01.04.2008, 11:40 - 12:00

  2. Motivation Piecewise smooth distributions Solution theory: First results Contents Motivation 1 Piecewise smooth distributions 2 Solution theory: First results 3 Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  3. Motivation Piecewise smooth distributions Solution theory: First results Motivation E ( · ) ˙ x = A ( · ) x + B ( · ) u E singular (1) y = C ( · ) x Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  4. Motivation Piecewise smooth distributions Solution theory: First results Motivation E ( · ) ˙ x = A ( · ) x + B ( · ) u E singular (1) y = C ( · ) x Equivalence: = ( SAT − SET ′ ) z + SBu SET ˙ z x = Tz (1) ⇐ ⇒ y = CTz for invertible matrices S , T Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  5. Motivation Piecewise smooth distributions Solution theory: First results Motivation E ( · ) ˙ x = A ( · ) x + B ( · ) u E singular (1) y = C ( · ) x Equivalence: = ( SAT − SET ′ ) z + SBu SET ˙ z x = Tz (1) ⇐ ⇒ y = CTz for invertible matrices S , T Assumption “Type” of transformation matrices S , T equal to “type” of coefficient matrices E , A , B , C . Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  6. Motivation Piecewise smooth distributions Solution theory: First results Assumptions z = ( SAT − SET ′ ) z + SBu SET ˙ y = CTz “Negative” assumptions Coefficients time-varying and not necessarily continuous Inhomogenity not necessarily continuous Initial values not necessarily consistent Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  7. Motivation Piecewise smooth distributions Solution theory: First results Assumptions z = ( SAT − SET ′ ) z + SBu SET ˙ y = CTz “Negative” assumptions Coefficients time-varying and not necessarily continuous Inhomogenity not necessarily continuous Initial values not necessarily consistent Goal Solution theory under this assumptions. Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  8. Motivation Piecewise smooth distributions Solution theory: First results Assumptions z = ( SAT − SET ′ ) z + SBu SET ˙ y = CTz “Negative” assumptions Coefficients time-varying and not necessarily continuous Inhomogenity not necessarily continuous Initial values not necessarily consistent Goal Solution theory under this assumptions. Consequences: Distributional solutions Distributional coefficients Multiplication of distributions! Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  9. Motivation Piecewise smooth distributions Solution theory: First results Contents Motivation 1 Piecewise smooth distributions 2 Solution theory: First results 3 Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  10. Motivation Piecewise smooth distributions Solution theory: First results Distributions revisited Definition Test functions: C ∞ := { ϕ ∈ C ∞ ( R → R ) | supp f is compact } 0 Distributions: D := { D : C ∞ → R | D is linear and continuous } 0 Distributions with given support M ⊆ R : D M := { D ∈ D | supp D ⊆ M } Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  11. Motivation Piecewise smooth distributions Solution theory: First results Distributions revisited Definition Test functions: C ∞ := { ϕ ∈ C ∞ ( R → R ) | supp f is compact } 0 Distributions: D := { D : C ∞ → R | D is linear and continuous } 0 Distributions with given support M ⊆ R : D M := { D ∈ D | supp D ⊆ M } Theorem (Distributions with point support) i =0 α i δ ( i ) ∃ α 0 , . . . , α n ∈ R : D = � n D ∈ D { t } , t ∈ R ⇒ t Dirac-impulse and its derivatives: δ ( i ) t ( ϕ ) = ( − 1) i ϕ ( i ) ( t ) Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  12. Motivation Piecewise smooth distributions Solution theory: First results Piecewise smooth distributions Definition (Piecewise smooth distributions D pw C ∞ ) D ∈ D pw C ∞ ⊂ D is a piecewise smooth distribution : ⇐ ⇒ ∃ f ∈ C ∞ � � ∃ feasible T ⊆ R ∃ D t ∈ D { t } | t ∈ T : pw � D = f D + D t t ∈ T f D D t i − 1 D t i +1 D t i t i − 1 t i t i +1 Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  13. Motivation Piecewise smooth distributions Solution theory: First results Properties of piecewise smooth distributions Theorem (Properties of D pw C ∞ ) Let F = f D + � t ∈ T F t ∈ D pw C ∞ . Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  14. Motivation Piecewise smooth distributions Solution theory: First results Properties of piecewise smooth distributions Theorem (Properties of D pw C ∞ ) Let F = f D + � t ∈ T F t ∈ D pw C ∞ . Closed under differentiation and integration: F ′ ∈ D pw C ∞ and � t 0 F ∈ D pw C ∞ Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  15. Motivation Piecewise smooth distributions Solution theory: First results Properties of piecewise smooth distributions Theorem (Properties of D pw C ∞ ) Let F = f D + � t ∈ T F t ∈ D pw C ∞ . Closed under differentiation and integration: F ′ ∈ D pw C ∞ and � t 0 F ∈ D pw C ∞ Pointwise evaluation : t 0 ∈ R : F ( t 0 − ) , F ( t 0 +) ∈ R und F [ t 0 ] ∈ D { t 0 } Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  16. Motivation Piecewise smooth distributions Solution theory: First results Properties of piecewise smooth distributions Theorem (Properties of D pw C ∞ ) Let F = f D + � t ∈ T F t ∈ D pw C ∞ . Closed under differentiation and integration: F ′ ∈ D pw C ∞ and � t 0 F ∈ D pw C ∞ Pointwise evaluation : t 0 ∈ R : F ( t 0 − ) , F ( t 0 +) ∈ R und F [ t 0 ] ∈ D { t 0 } Restriction to intervals: M ⊆ R interval : F M ∈ D pw C ∞ ∩ D M Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  17. Motivation Piecewise smooth distributions Solution theory: First results Properties of piecewise smooth distributions Theorem (Properties of D pw C ∞ ) Let F = f D + � t ∈ T F t ∈ D pw C ∞ . Closed under differentiation and integration: F ′ ∈ D pw C ∞ and � t 0 F ∈ D pw C ∞ Pointwise evaluation : t 0 ∈ R : F ( t 0 − ) , F ( t 0 +) ∈ R und F [ t 0 ] ∈ D { t 0 } Restriction to intervals: M ⊆ R interval : F M ∈ D pw C ∞ ∩ D M Associative multiplication (Fuchssteiner multiplication): G ∈ D pw C ∞ : FG ∈ D pw C ∞ with ( FG ) ′ = F ′ G + FG ′ , ∀ f , g ∈ C ∞ ( fg ) D = f D g D pw , δ t F = F ( t − ) and F δ t = F ( t +) Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  18. Motivation Piecewise smooth distributions Solution theory: First results The Fuchssteiner multiplication Recall: F ∈ D pw C ∞ ⇔ F = f D + F [ · ], where f ∈ C ∞ pw and F [ · ] = � t ∈ T F [ t ] i δ ( i ) F [ t ] = � n t i =0 α t t Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  19. Motivation Piecewise smooth distributions Solution theory: First results The Fuchssteiner multiplication Recall: F ∈ D pw C ∞ ⇔ F = f D + F [ · ], where f ∈ C ∞ pw and F [ · ] = � t ∈ T F [ t ] i δ ( i ) F [ t ] = � n t i =0 α t t Definition (Multiplication by Dirac impulses) For F ∈ D pw C ∞ and t ∈ R let δ t F := F ( t − ) δ t and F δ t := F ( t +) δ t and for n ∈ N � ′ � ′ � � δ ( n +1) δ ( n ) − δ ( n ) F δ ( n +1) F δ ( n ) − F ′ δ ( n ) t F ′ , F := := t F t . t t t Hence for F , G ∈ D pw C ∞ : FG = ( fg ) D + f D F [ · ] + G [ · ] g D Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

  20. Motivation Piecewise smooth distributions Solution theory: First results Distributional DAEs E ˙ x = A x + Bu y = Cx E , A , B , C matrices with D pw C ∞ -entries x , y , u vectors with D pw C ∞ -entries Stephan Trenn Institut f¨ ur Mathematik, Technische Universit¨ at Ilmenau Distributional solution theory of linear DAEs

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend