distributed localization and control of a group of
play

Distributed localization and control of a group of underwater robots - PDF document

Distributed localization and control of a group of underwater robots using contractor programming L. Jaulin, S. Rohou, J. Nicola, M. Saad, F. Le Bars and B. Zerr. SWIM15 Prague, June 9-11, 2015 ENSTA Bretagne, OSM, LabSTICC. Video of the


  1. Distributed localization and control of a group of underwater robots using contractor programming L. Jaulin, S. Rohou, J. Nicola, M. Saad, F. Le Bars and B. Zerr.

  2. SWIM’15 Prague, June 9-11, 2015 ENSTA Bretagne, OSM, LabSTICC. Video of the presentation https://youtu.be/q6F7WDCcf2A

  3. 1 Scout project

  4. Goal : (i) coordination of underwater robots ; (ii) collabo- rative behavior.

  5. Supervisors : L. Jaulin, C. Aubry, S. Rohou, B. Zerr, J. Nicola, F. Le bars Compagny : RTsys (P. Raude) Students : G. Ricciardelli, L. Devigne, C. Guillemot, S. Pommier, T. Viravau, T. Le Mezo, B. Sultan, B. Moura, M. Fadlane, A. Bellaiche, T. Blanchard, U. Da rocha, G. Pinto, K. Machado.

  6. 2 Controller

  7. 3 Localization problem

  8. Range only Based on interval analysis Robust with respect to outliers Distributed computation Low rate communication We propose here to use a contractor programming ap- proach

  9. 4 Matrices and contractors

  10. linear application matrices → � � � α = 2 a + 3 h 2 3 L : → A = γ = h − 5 a 1 − 5 We have a matrix algebra and Matlab. We have: var ( L ) = { a, h } , covar ( L ) = { α, γ } . But we cannot write: var ( A ) = { a, h } , covar ( A ) = { α, γ } .

  11. constraint → contractor a · b = z →

  12. Contractor fusion � a · b = z → C 1 b + c = d → C 2 Since b occurs in both constraints, we fuse the two con- tractors as: C = C 1 × C 2 ⌋ (2 , 1) = C 1 |C 2 (for short)

  13. 5 Localization with contractors

  14. x j h +1 = f ( x j h , u j h ) , h ∈ { k − ¯ h, . . . , k } = � The observer: C k,j h,...,k } C j x h ∈{ k − ¯ x ( h ) � � var ( C k,j x ) = var ( C k,j x j h , . . . , x j k , x j x ( h ) ) = . k − ¯ k +1

  15. z j h = h ( x j h ) � � x ∩ � { q 1 } Observer RSO: C k,j x ,z = C k,j C k,j x | C h,j . z h ∈{ k − ¯ h,...,k }

  16. To get an outer approximation of set ( C k,j x ,z ) , we need a paver. We can also obtain an inner approximation using separators [SMART 2015].

  17. t = 0

  18. t = 0 . 1

  19. t = 0 . 2

  20. t = 0 . 3

  21. t = 0 . 4

  22. t = 0 . 5

  23. t = 0 . 6

  24. t = 0 . 7

  25. t = 0 . 8

  26. t = 0 . 9

  27. t = 1 . 0

  28. t = 1 . 1

  29. t = 1 . 2

  30. t = 1 . 3

  31. t = 1 . 4

  32. 6 Distributed localization

  33. y j,ℓ h = g ( x j h , x ℓ h )

  34. Observer: � � � { q 1 } C k,j = C k,j C k,j x | C h,j ∩ x ,z x z h ∈{ k − ¯ h,...,k } � � � { q 2 } C k,j x | C h,j,ℓ ∩ y h ∈{ k − ¯ h,...,k }

  35. 7 Singularity

  36. 8 Test case

  37. QT/C++ code available at http://www.ensta-bretagne.fr/jaulin/easibex.html

  38. 9 Tests

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend