difference equations arising in evolutionary population
play

Difference Equations Arising in Evolutionary Population Dynamics - PowerPoint PPT Presentation

Difference Equations Arising in Evolutionary Population Dynamics J. M. Cushing Simon Maccracken Department of Mathematics Department of Ecology & Evolutionary Biology Interdisciplinary Program in Applied Mathematics University of


  1. Difference Equations Arising in Evolutionary Population Dynamics J. M. Cushing Simon Maccracken Department of Mathematics Department of Ecology & Evolutionary Biology Interdisciplinary Program in Applied Mathematics University of Arizona University of Arizona Tucson, Arizona, USA Tucson, Arizona, USA Support by the National Science Foundation

  2. OUTLINE 1/30 ICDEA 2012 Barcelona

  3. Semelparous Juvenile-Adult Models J b ( J A A , ) t 1 t t t A s ( J A J , ) t 1 t t t Density dependence 1 : R [0, ) 2 are C : (0,1) 2 where open (0,0) R (0,0) (0,0) 1 b inherent (low density) adult fertility s inherent (low density) juvenile survival R sb 0 inherent net reproductive number ( expected offspring per individual per life time ) 2/30 ICDEA 2012 Barcelona

  4. Iteroparous Juvenile-Adult Models J b ( J A A , ) t 1 t t t A s ( J A J , ) s ( J A A , ) t 1 j j t t t a a t t t 1 : R [0, ) 2 are C , : (0,1) j a 2 where open (0,0) R (0,0) (0,0) (0,0) 1 j a b inherent adult fertility s inherent juvenile survival, 0 s inherent adult survival j a s j inherent net reproductive number R b 0 1 s a ( expected offspring per individual per life time ) 3/30 ICDEA 2012 Barcelona

  5. Iteroparous Juvenile-Adult Models J b ( J A A , ) t 1 t t t A s ( J A J , ) s ( J A A , ) t 1 j j t t t a a t t t Define : s s s s s 0 0 0 0 0 0 j j j a a a J j A A a J A j J a 1 s 1 s 1 s 1 s 1 s a a a a a Within-class Between-class competitive effects competitive effects 4/30 ICDEA 2012 Barcelona

  6. Iteroparous Juvenile-Adult Models J b ( J A A , ) t 1 t t t A s ( J A J , ) s ( J A A , ) t 1 j j t t t a a t t t Fundamental Bifurcation Theorem 1. Origin is stable if R 0 < 1 and unstable if R 0 > 1 . Assume a + ≠ 0 . 2. Positive equilibria (transcritically) bifurcate from the origin at R 0 = 1. 3. Stability depends on the direction of bifurcation: Right (forward) bifurcating positive equilibria are stable. Left (backward) bifurcating positive equilibria are unstable . 4. a + < 0 = > right ( hence stable ) bifurcation a + > 0 = > left ( hence unstable ) bifurcation 5/30 ICDEA 2012 Barcelona

  7. Iteroparous Juvenile-Adult Models J b ( J A A , ) t 1 t t t A s ( J A J , ) s ( J A A , ) t 1 j j t t t a a t t t Notes  A right (stable) bifurcation occurs if there are no positive feedback effects (at low density), i.e. if there are no positive derivatives 0 0 0 0 A . , , , J A J  Positive feedback terms (positive derivatives) are called Allee effects.  A left (unstable) bifurcation can only occur in the presence of strong Allee effects. 6/30 ICDEA 2012 Barcelona

  8. Semelparous Juvenile-Adult Models J b ( J A A , ) t 1 t t t A s ( J A J , ) t 1 t t t Lloyd & Dybas (1966, 1974) Wikan & Mjølhus (1997) Hoppensteadt & Keller (1976) Behncke (2000) Bulmer (1977) Davydova (2004) May (1979) Davydova, Diekmann & van Gils (2003, 2005) Ebenman (1987, 1988) Mjølhus, Wikan & Solberg (2005) JC & Li (1989, 1992) JC (1991, 2003, 2006, 2010) Wikan & (1996) Kon (2005, 2007) Nisbet & Onyiah (1994) Diekmann & Yan (2008) JC & Henson (2012) 7/30 ICDEA 2012 Barcelona

  9. Semelparity Plants Invertebrates Vertebrates Annuals Species of Insects Arachnids Molluscs Species of : Monocarpic perennials Fish Lizards Amphibians Periodical Insects Marsupials … even a mammal ! Magicicada spp. 13, 17 year cycles Lasiocampa “Poster - child” quercus var Melontha spp. species 1, 2 year cycles 3, 4, 5 year cycles 8/30 ICDEA 2012 Barcelona

  10. Semelparous Juvenile-Adult Models J b ( J A A , ) t 1 t t t A s ( J A J , ) t 1 t t t Define : 0 0 0 0 a s s J j A J j A Within-class Between-class competitive effects competitive effects 10/30 ICDEA 2012 Barcelona

  11. Semelparous Juvenile-Adult Models J b ( J A A , ) t 1 t t t A s ( J A J , ) t 1 t t t Fundamental bifurcation Theorem JC & Jia Li (1989), JC (2006), JC & Henson (2012) 11/30 ICDEA 2012 Barcelona

  12. Semelparous Juvenile-Adult Models J b ( J A A , ) t 1 t t t A s ( J A J , ) t 1 t t t Fundamental bifurcation Theorem 1. Origin is stable if R 0 = sb < 1 and unstable if R 0 > 1 . Assume a + ≠ 0 . 2. Positive equilibria bifurcate from the origin at R 0 = 1. (or ) right (or left) bifurcation a 0 0 3. Synchronous 2-cycles also bifurcate from the origin at R 0 = 1. 0 0 (or ) right (or left) bifurcation s 0 0 J A 4. (a) Left bifurcations are unstable. (b) A right bifurcation is stable if the other bifurcation is to the left. (c) If both bifurcations are to the right, then equilibria stabl e & 2 - cycles un stable a 0 Dynamic equilibria unstab le & 2 - cycles st able a 0 Dichotomy 11/30 ICDEA 2012 Barcelona

  13. Notes  If there are no Allee effects, that is, no positive derivatives 0 0 0 0 , , , J A J A then Dynamic Dichotomy occurs.  Weak between-class competition gives stable equilibria 0 0 0 0 a s s 0 J j A J j A  Strong between-class competition gives stable synchronous 2-cycles 0 0 0 0 a s s 0 J j A J j A  Between-class (nymph) competition is leading hypothesis for periodical cicada dynamics  Dichotomy observed in experiments with Tribolium castaneum JC et al., Chaos in Ecology, Academic Press (2003) King, Costantino, JC, Henson, Desharnais & Dennis, Proc Nat Acad Sci (2003) Dennis, Desharnais, JC, Henson & Costantino , Ecol Monogr (2001) Costantino, JC, Dennis & Desharnais, Science (1997) 12/30 ICDEA 2012 Barcelona

  14. Semelparous Juvenile-Adult Models J b ( J A A , ) t 1 t t t A s ( J A J , ) t 1 t t t Typical example for which the Dynamic Dichotomy occurs: 1 1 ( , ) J A , ( , ) J A 1 c J c A 1 c J c A 11 12 21 22 Leslie-Gower-type competition interaction functionals … a natural extension of discrete logistic ( or Beverton-Holt ) equation for an unstructured population. 13/30 ICDEA 2012 Barcelona

  15. Evolutionary Semelparous Juvenile-Adult Models J b ( ) ( u J A u A , , ) (0,0, ) u 1 t 1 t t t A s u ( ) ( J A u J , , ) (0,0, ) u 1 t 1 t t t u mean of a phenotypic trait subject to Darwinian evolution trait interval u U Assume max ( ) u 1. U Then maximum adult fertility ( over the trait interval ) b U 14/30 ICDEA 2012 Barcelona

  16. Evolutionary Semelparous Juvenile-Adult Models J b ( ) ( u J A u A , , ) (0,0, ) u 1 t 1 t t t t t A s u ( ) ( J A u J , , ) (0,0, ) u 1 t 1 t t t t t Using Evolutionary Game Theory Methodology 1 u u v ln R J A u ( , , ) t 1 t u 0 2 R J A u ( , , ) b ( ) ( ) ( , , ) ( , , ) u s u J A u J A u 0 v trait variance ( assumed constant in time ) Vincent & Brown 2005 15/30 ICDEA 2012 Barcelona

  17. Evolutionary Semelparous Juvenile-Adult Models J b ( ) ( u J A u A , , ) (0,0, ) u 1 t 1 t t t t t A s u ( ) ( J A u J , , ) (0,0, ) u 1 t 1 t t t t t 1 u u v ln[ b ( ) ( ) ( , , ) ( , , )] u s u J A u J A u t 1 t u 2  What are the dynamics of this model ?  When v = 0 the Fundamental Bifurcation Theorem applies and the Dynamics Dichotomy is a possibility.  What happens when v > 0 (i.e. when evolution is present)? 16/30 ICDEA 2012 Barcelona

  18. Evolutionary Semelparous Juvenile-Adult Models J b ( ) ( u J A u A , , ) (0,0, ) u 1 t 1 t t t t t A s u ( ) ( J A u J , , ) (0,0, ) u 1 t 1 t t t t t 1 u u v ln[ b ( ) ( ) ( , , ) ( , , )] u s u J A u J A u t 1 t u 2 Extinction Equilibria & Critical Traits An extinction equilibrium ( J, A, u ) is an equilibrium with J = A = 0. A critical trait u satisfies u R 0 (0,0, ) u 0. Easy to see that … (0 , 0 , u ) is an extinction equilibrium if and only if u is a critical trait. 17/30 ICDEA 2012 Barcelona

  19. Evolutionary Semelparous Juvenile-Adult Models J b ( ) ( u J A u A , , ) (0,0, ) u 1 t 1 t t t t t A s u ( ) ( J A u J , , ) (0,0, ) u 1 t 1 t t t t t 1 u u v ln[ b ( ) ( ) ( , , ) ( , , )] u s u J A u J A u t 1 t u 2 Synchronous 2-cycles J 0 0 A u u 1 2 18/30 ICDEA 2012 Barcelona

  20. Main Theorem Assume … 1. There exists a critical trait u * : ∂ u R 0 (0, 0, u *) = 0 2. ∂ uu R 0 (0 ,0, u *) ≠ 0 0 0 0 0 0 0 3. and a s s 0 s 0 J j A J j A J A Then … (a) If ∂ uu R 0 (0 ,0, u *) < 0 then the Fundamental Bifurcation Theorem and the Dynamic Dichotomy hold … using R 0 (0 ,0, u *) as a bifurcation parameter. (b) If ∂ uu R 0 (0 ,0, u *) > 0 then the equilibria (extinction & positive) equilibria and the synchronous 2-cycles are all unstable . NOTE: R 0 (0, 0, u ) = b b ( u ) s ( u ) 19/30 ICDEA 2012 Barcelona

  21. Examples Leslie-Gower Nonlinearities 1 1 ( , ) J A , ( , ) J A 1 c J c A 1 c J c A 11 12 21 22 at least one c 0, c 0 ij ii • No trait dependence in these density feedback terms • No Allee effects • Dynamic Dichotomy holds in absence of evolution • Dynamic dichotomy holds occurs in the presence of evolution if ∂ uu R 0 (0 ,0, u *) < 0 20/30 ICDEA 2012 Barcelona

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend