diagrammatic monte carlo approach to angular momentum in
play

Diagrammatic Monte Carlo approach to angular momentum in quantum - PowerPoint PPT Presentation

Diagrammatic Monte Carlo approach to angular momentum in quantum many-body systems Giacomo Bighin Institute of Science and Technology Austria Workshop on Polarons in the 21st century , ESI, Vienna, December 10th, 2019 Rotations in a


  1. Diagrammatic Monte Carlo approach to angular momentum in quantum many-body systems Giacomo Bighin Institute of Science and Technology Austria Workshop on “Polarons in the 21st century” , ESI, Vienna, December 10th, 2019

  2. Rotations in a many-body environment Rotations in a many-body environment and rotating impurities: Molecular physics/chemistry : molecules embedded into helium nanodroplets. J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43 , 2622 (2004). Condensed matter : rotating molecules inside a ‘cage’ in perovskites. C. Eames et al, Nat. Comm. 6 , 7497 (2015). Ultracold matter : molecules and ions in a BEC. B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys. Rev. A 94 , 041601(R) (2016). 2/13

  3. Rotations in a many-body environment Rotations in a many-body environment and rotating impurities: Molecular physics/chemistry : molecules embedded into helium nanodroplets. J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43 , 2622 (2004). Condensed matter : rotating molecules inside a ‘cage’ in perovskites. C. Eames et al, Nat. Comm. 6 , 7497 (2015). Ultracold matter : molecules and ions in a BEC. B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys. Rev. A 94 , 041601(R) (2016). 2/13

  4. Rotations in a many-body environment Rotations in a many-body environment and rotating impurities: • How to sample these diagrams at all diagrams? • How to describe rotations in a many-body Questions: 2/13 B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys. Rev. A 94 , 041601(R) (2016). and ions in a BEC. Ultracold matter : molecules C. Eames et al, Nat. Comm. 6 , 7497 (2015). perovskites. molecules inside a ‘cage’ in Condensed matter : rotating J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43 , 2622 (2004). helium nanodroplets. molecules embedded into Molecular physics/chemistry : environment in terms of Feynman orders using Diagrammatic Monte Carlo?

  5. Feynman diagrams molecule Feynman diagrams and perturbation theory: molecule-phonon interaction The angulon Hamiltonian: phonons 3/13 J 2 � � � � ω k ˆ k λµ ˆ λµ (ˆ θ, ˆ ϕ )ˆ k λµ + Y λµ (ˆ θ, ˆ ϕ )ˆ ˆ B ˆ b † Y ∗ b † H = + + U λ ( k ) b k λµ b k λµ ���� k λµ k λµ � �� � � �� �

  6. Feynman diagrams phonons How does angular momentum enter this picture? Feynman diagrams and perturbation theory: molecule-phonon interaction The angulon Hamiltonian: 3/13 molecule J 2 � � � � ω k ˆ k λµ ˆ λµ (ˆ θ, ˆ ϕ )ˆ k λµ + Y λµ (ˆ θ, ˆ ϕ )ˆ ˆ B ˆ b † Y ∗ b † H = + + U λ ( k ) b k λµ b k λµ ���� k λµ k λµ � �� � � �� � = + + + + . . .

  7. Feynman diagrams phonons Fröhlich polaron Feynman diagrams and perturbation theory: molecule-phonon interaction The angulon Hamiltonian: 3/13 molecule J 2 � � � � ω k ˆ k λµ ˆ λµ (ˆ θ, ˆ ϕ )ˆ k λµ + Y λµ (ˆ θ, ˆ ϕ )ˆ ˆ B ˆ b † Y ∗ b † H = + + U λ ( k ) b k λµ b k λµ ���� k λµ k λµ � �� � � �� �

  8. Feynman diagrams phonons Angulon Feynman diagrams and perturbation theory: molecule-phonon interaction The angulon Hamiltonian: 3/13 molecule J 2 � � � � ω k ˆ k λµ ˆ λµ (ˆ θ, ˆ ϕ )ˆ k λµ + Y λµ (ˆ θ, ˆ ϕ )ˆ ˆ B ˆ b † Y ∗ b † H = + + U λ ( k ) b k λµ b k λµ ���� k λµ k λµ � �� � � �� �

  9. Feynman diagrams phonons here? momentum enter How does angular Angulon Feynman diagrams and perturbation theory: molecule-phonon interaction The angulon Hamiltonian: 3/13 molecule J 2 � � � � ˆ B ˆ ω k ˆ b † k λµ ˆ λµ (ˆ θ, ˆ ϕ )ˆ b † k λµ + Y λµ (ˆ θ, ˆ ϕ )ˆ Y ∗ H = + + U λ ( k ) b k λµ b k λµ ���� k λµ k λµ � �� � � �� �

  10. Feynman rules Each vertex Not the same for angular enforced by an appropriate labeling. Usually momentum conservation is GB and M. Lemeshko, Phys. Rev. B 96 , 419 (2017). Each free propagator 4/13 Each phonon propagator � λ i µ i ( − 1 ) µ i G 0 ,λ i λ i µ i � λ i µ i ( − 1 ) µ i D λ i λ i µ i � � λ i λ j λ k ( − 1 ) λ i ⟨ λ i | | Y ( λ j ) | | λ k ⟩ µ i µ j µ k momentum, j and λ couple to | j − λ | , . . . , j + λ . � j ′ m ′

  11. Feynman rules Each vertex from D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, “Quantum Theory of Angular Momentum” . theoretical atomic spectroscopy) Diagrammatic theory of angular momentum (developed in the context of GB and M. Lemeshko, Phys. Rev. B 96 , 419 (2017). Each free propagator 4/13 Each phonon propagator � λ i µ i ( − 1 ) µ i G 0 ,λ i λ i µ i � λ i µ i ( − 1 ) µ i D λ i λ i µ i � � λ i λ j λ k ( − 1 ) λ i ⟨ λ i | | Y ( λ j ) | | λ k ⟩ µ i µ j µ k

  12. Angulon spectral function: first and second order Self-energy (first order) Dyson equation Self-energy (second order) GB and M. Lemeshko, Phys. Rev. B 96 , 419 (2017). 5/13 = = +

  13. What about higher orders? At order n : n integrals, and higher angular momentum couplings (3 n -j symbols). 6/13 = + + + + . . . + + + . . . + + . . .

  14. Diagrammatic Monte Carlo Numerical technique for summing all Feynman diagrams 1 . Usually: structureless particles (Fröhlich polaron, Holstein polaron), or particles Molecules 2 ? Connecting DiagMC and molecular simulations! 1 N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81 , 2514 (1998). 2 GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121 , 165301 (2018). 7/13 = + + + + … + + + … with a very simple internal structure (e.g. spin 1 / 2 ).

  15. Diagrammatic Monte Carlo DiagMC idea: set up a stochastic process sampling among all diagrams 1 . 1 N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81 , 2514 (1998). etc... Number of variables varies with the topology! Configuration space: diagram topology, phonons internal variables, times, 8/13 H int Green’s function Hamiltonian for an impurity problem: ˆ H = ˆ H imp + ˆ H bath + ˆ G ( τ ) = + + + + . . . = all Feynman diagrams How: ergodicity, detailed balance w 1 p ( 1 → 2 ) = w 2 p ( 2 → 1 ) Result: each configuration is visited with probability ∝ its weight.

  16. Diagrammatic Monte Carlo Configuration space: diagram topology, phonons internal variables, times, namic limit: no finite-size efgects or systematic Works in continuous time and in the thermody- quantization. A Monte Carlo technique that works in second 8/13 1 N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81 , 2514 (1998). etc... Number of variables varies with the topology! DiagMC idea: set up a stochastic process sampling among all diagrams 1 . Green’s function H int errors. Hamiltonian for an impurity problem: ˆ H = ˆ H imp + ˆ H bath + ˆ G ( τ ) = + + + + . . . = all Feynman diagrams How: ergodicity, detailed balance w 1 p ( 1 → 2 ) = w 2 p ( 2 → 1 ) Result: each configuration is visited with probability ∝ its weight.

  17. Result: the time the stochastic process spends with diagrams of length . One can fill a histogram afuer each update and get the Updates We need updates spanning the whole configuration space: Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram. will be proportional to G Green’s function. 9/13

  18. Result: the time the stochastic process spends with diagrams of length . One can fill a histogram afuer each update and get the Updates We need updates spanning the whole configuration space: Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram. will be proportional to G Green’s function. 9/13

  19. Result: the time the stochastic process spends with diagrams of length . One can fill a histogram afuer each update and get the Updates We need updates spanning the whole configuration space: Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram. will be proportional to G Green’s function. 9/13

  20. Result: the time the stochastic process spends with diagrams of length . One can fill a histogram afuer each update and get the Updates We need updates spanning the whole configuration space: Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram. will be proportional to G Green’s function. 9/13

  21. Result: the time the stochastic process spends with diagrams of length . One can fill a histogram afuer each update and get the Updates We need updates spanning the whole configuration space: Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram. will be proportional to G Green’s function. 9/13

  22. Result: the time the stochastic process spends with diagrams of length . One can fill a histogram afuer each update and get the Updates We need updates spanning the whole configuration space: Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram. will be proportional to G Green’s function. 9/13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend