deuterons at lhc snowballs in hell via hydrodynamics and
play

Deuterons at LHC: snowballs in hell via hydrodynamics and hadronic - PowerPoint PPT Presentation

Deuterons at LHC: snowballs in hell via hydrodynamics and hadronic afterburner Dmytro (Dima) Oliinychenko November 20, 2018 in collaboration with: Volker Koch LongGang Pang Hannah (Petersen) Elfner Deuteron in heavy ion collisions


  1. Deuterons at LHC: “snowballs in hell” via hydrodynamics and hadronic afterburner Dmytro (Dima) Oliinychenko November 20, 2018 in collaboration with: Volker Koch LongGang Pang Hannah (Petersen) Elfner

  2. Deuteron in heavy ion collisions • Bound state of proton and neutron, binding energy 2.2 MeV • Deuteron yield in Pb+Pb collisions at √ s NN = 2 . 76 TeV: N d = gV 2 π 2 Tm 2 K 2 ( m / T ), T = 155 MeV Snowballs in hell. A. Andronic, et al., arXiv:1710.09425 Deuteron: rapid chemical freeze-out at 155 MeV, like hadrons? 1

  3. Methodology: hybrid approach • CLVisc hydro L. G. Pang, H. Petersen and X. N. Wang, arXiv:1802.04449 [nucl-th] • SMASH hadronic afterburner J. Weil et al. , PRC 94, no. 5, 054905 (2016) • Treat deuteron as a single particle • implement deuteron + X cross-sections explicitly 2

  4. Most important deuteron production/disintegration reactions Largest d + X disintegration rate → largest reverse production rate Most important = largest σ inel d + X n X d + X [mb] ( √ s − √ s thr = [0 . 05 , 0 . 25] GeV) dN X σ inel X dy | y =0 π ± 80 - 160 732 K + < 40 109 K − < 80 109 50 - 100 33 p ¯ p 80 - 200 33 γ < 0 . 1 comparable to π ? π + d are the most important because of pion abundance 3

  5. Reactions with deuteron implemented in SMASH • π d ↔ π np , π d ↔ np , elastic π d ↔ π d • Nd ↔ Nnp , elastic Nd ↔ Nd • ¯ Nd ↔ ¯ Nnp , elastic ¯ Nd ↔ ¯ Nd • CPT conjugates of all above – reactions for anti-deuteron • all are tested to obey detailed balance within 1% precision π d ↔ π np is the most important at high (LHC) energies Nd ↔ Nnp is the most important at low (AGS) energies 4

  6. Reactions of deuteron with pions SMASH πd total total 400 el - σ πd→NN tot - σ πd σ πd πd→πnp [Arndt et al] πd elastic elastic πd→pp πd→pp 300 σ [mb] 100 2 2.2 2.4 2.6 2.8 3 √s [GeV] π d ↔ π np is the most important at LHC energies σ inel π d > σ el π d , not like for hadrons 5

  7. Reactions of deuteron with (anti-)nucleons 250 (a) tot - σ pd el σ pd [Carlson et al] 200 σ Nd→Nnp SMASH σ [mb] 50 0 2.8 2.85 2.9 2.95 3 3.05 3.1 √s [GeV] Nd ↔ Nnp , ¯ Nd ↔ ¯ Nnp : large cross-sections but not important at LHC energies, because N and ¯ N are sparse 6

  8. Reactions of deuteron with (anti-)nucleons 350 (b) σ pd inelastic [Bizzarri et al] 300 σ Nd→Nnp SMASH 250 σ [mb] 100 50 0 2.8 2.9 3 3.1 3.2 √s [GeV] Nd ↔ Nnp , ¯ Nd ↔ ¯ Nnp : large cross-sections but not important at LHC energies, because N and ¯ N are sparse 6

  9. Transverse momentum spectra 10 4 π x 5 Hydro + decays 1000 Hydro + afterburner same, no BB annihil. ALICE, PbPb, 0-10% K 1/2π p T d 2 N d /dydp T p x 0.2 1 d 10 −3 10 −4 0 1 2 3 4 5 p T [GeV] Pion and kaon spectra not affected by afterburner Proton spectra: pion wind effect and B ¯ B annihilations ( ∼ 10%) 7

  10. Obtaining B 2 ( p T ) coalescence parameter d 2 Nd 1 pT dpT dy | pd T =2 pp 2 π B 2 ( p T ) = T � 2 � d 2 Np 1 2 π pT dpT dy 10 hydro + afterburner ALICE, PbPb, 0-10% 8 B 2 [GeV 2 /c 3 ] (x 10 4 ) 6 4 2 0 0 0.5 1 1.5 2 2.5 p T /A [GeV] Reproducing B 2 without any free parameters 8

  11. B 2 ( p T ) for different centralities Pb+Pb, 2.76 TeV 70 60-80% 40-60% 60 20-40% B 2 [GeV 2 ] × 10 4 10-20% 0-10% 10 0 0 0.5 1 1.5 2 2.5 p T [GeV] Works well for all centralities 9

  12. p T -spectra for different centralities 100 Pb+Pb, 2.76 TeV (c) p 1/N ev 1/2πp T d 2 N/dp T dy [GeV -2 ] 1 0-10% x4 10-20% x2 20-40% 40-60% 60-80% 10 −5 0 1 2 3 4 5 p T [GeV] 10

  13. p T -spectra for different centralities Pb+Pb, 2.76 TeV (d) 0.1 d 1/N ev 1/2πp T d 2 N/dp T dy [GeV -2 ] 0-10% x8 10-20% x4 20-40% x2 40-60% 60-80% 10 −6 0 1 2 3 4 5 p T [GeV] 10

  14. Does deuteron freeze out at 155 MeV? Only less than 1% of final deuterons original from hydrodynamics 0.03 0-10% Pb+Pb, √s = 2.76 TeV inelastic elastic deuteron 1/N ev dN coll /dt 0 0 20 40 60 80 t of last collision [fm/c] Deuteron freezes out at late time Its chemical and kinetic freeze-outs roughly coincide 11

  15. Is π d ↔ π np reaction equilibrated |y| < 1 0.1 Reactions / event 0.01 πpn → πd: formation πd → πpn: disintegration 10 −3 (πpn → πd) - (πd → πpn) (πd → πpn) + (πpn → πd) 20 rel. diff. [%] 0 −20 −40 0 10 20 30 40 50 t [fm/c] After about 12-15 fm/c within 5% π d ↔ π np is equilibrated 12

  16. Deuteron yield 0.8 PbPb, 0-10%, √s = 2.76 TeV, |y| < 1 0.6 deuteron multiplicity default d init 0.4 0.2 dN/dy| ALICE × (Δy = 2) d 0 0 20 40 60 80 100 t [fm/c] The yield is almost constant. Why? Does afterburner really play any role? 13

  17. Deuteron yield 0.8 PbPb, 0-10%, √s = 2.76 TeV, |y| < 1 0.6 deuteron multiplicity default d init no deuteron init 0.4 0.2 dN/dy| ALICE × (Δy = 2) d 0 0 20 40 60 80 100 t [fm/c] No deuterons at particlization: also possible. Here all deuterons are from afterburner. 13

  18. Deuteron yield 0.8 PbPb, 0-10%, √s = 2.76 TeV, |y| < 1 0.6 deuteron multiplicity deuteron x3 init default d init no deuteron init 0.4 0.2 dN/dy| ALICE × (Δy = 2) d 0 0 20 40 60 80 100 t [fm/c] No deuterons at particlization: also possible. Here all deuterons are from afterburner. 13

  19. Deuteron yield 0.8 PbPb, 0-10%, √s = 2.76 TeV, |y| < 1 deuteron x3 init 0.6 deuteron multiplicity default d init no deuteron init w/o BB annihilation 0.4 0.2 dN/dy| ALICE × (Δy = 2) d 0 0 20 40 60 80 100 t [fm/c] Without B ¯ B annihilations yield coincidence is less impressive 13

  20. Deuteron yield 0.8 PbPb, 0-10%, √s = 2.76 TeV, |y| < 1 deuteron x3 init default d init 0.6 deuteron multiplicity no deuteron init w/o BB annihilation Freeze-out at 165 MeV 0.4 0.2 dN/dy| ALICE × (Δy = 2) d 0 0 20 40 60 80 100 t [fm/c] But it persists if T of particlization is changed to 165 MeV 13

  21. Toy model of deuteron production: no annihilations • only π , N , ∆, and d • isoentropic expansion • pion number conservation • baryon (not net!) number conservation ( s π ( T , µ π ) + s N ( T , µ B ) + + s ∆ ( T , µ B + µ π ) + s d ( T , 2 µ B )) V = const ( ρ ∆ ( T , µ B + µ π ) + ρ π ( T , µ π )) V = const ( ρ N ( T , µ B ) + ρ ∆ ( T , µ B + µ π ) + 2 ρ d ( T , 2 µ B )) V = const 14

  22. Toy model of deuteron production: results Nucleon Deuteron yield(V)/yield(V 0 ) Pion 1.2 Delta 1 0.8 0.6 T 0.3 μ B [MeV] μ π 0.2 0.1 0 1 1.5 2 2.5 3 V/V 0 No annihilation: deuteron yield grows, like in simulation. 15

  23. Toy model of deuteron production: results Nucleon Deuteron yield(V)/yield(V 0 ) Pion 1.2 Delta 1 0.8 0.6 T 0.3 μ B [MeV] μ π 0.2 0.1 0 1 1.5 2 2.5 3 V/V 0 T particlization = 165 MeV. Relative yields are similar, like in simulation. 15

  24. Toy model of deuteron production: results Nucleon Deuteron yield(V)/yield(V 0 ) Pion 1.2 Delta 1 0.8 0.6 T 0.3 μ B [MeV] μ π 0.2 0.1 0 1 1.5 2 2.5 3 V/V 0 V / V 0 Annihilation out of equilibrium: µ B = µ B a + V / V 0 , a = 0 . 1 T particlization = 155 MeV. 15

  25. Toy model of deuteron production: results Nucleon Deuteron yield(V)/yield(V 0 ) Pion 1.2 Delta 1 0.8 0.6 T 0.3 μ B [MeV] μ π 0.2 0.1 0 1 1.5 2 2.5 3 V/V 0 V / V 0 Annihilation out of equilibrium: µ B = µ B a + V / V 0 , a = 0 . 1 T particlization = 165 MeV. Qualitatively similar to our simulation. 15

  26. Summary • π d ↔ π pn : most important deuteron producing / disintegrating reaction at LHC • deuteron does not freeze-out at 155 MeV • chemical and kinetic freeze-outs of deuteron roughly coincide • deuteron yield stays constant after particlization, as thermal model assumes • reason: interplay of π d ↔ π pn (d ↑ ) close to equilibrium and B ¯ B annihilations out of equilibrium (d ↓ ) Outlook • Deuteron: lower energies / smaller systems • Relation to proton density fluctuations and critical point 16

  27. Light nuclei production is related to nucleon density fluctuations in coordinate space Kaijia Sun et al., Phys. Lett. B 774, 103 (2017) ∆ n ≡ � ( δ n ) 2 � � n � 2 , N t · N p / N 2 d ≈ g (1 + ∆ n ) , g ≈ 0 . 29 Dingwei Zhang, poster at Quark Matter 2018 Can one reproduce this with pure cascade? 17

  28. SMASH transport approach S imulating M ultiple A ccelerated S trongly-interacting H adrons 18

  29. SMASH transport approach J. Weil et al., Phys.Rev. C94 (2016) no.5, 054905 • Monte-Carlo solver of relativistic Boltzmann equations BUU type approach, testparticles ansatz: N → N · N test , σ → σ/ N test • Degrees of freedom • most of established hadrons from PDG up to mass 3 GeV • strings: do not propagate, only form and decay to hadrons • Propagate from action to action (timesteps only for potentials) action ≡ collision, decay, wall crossing � • Geometrical collision criterion: d ij ≤ σ/π • Interactions: 2 ↔ 2 and 2 → 1 collisions, decays, potentials, string formation (soft - SMASH, hard - Pythia 8) and fragmentation via Pythia 8 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend