detection of symmetry protected topological phases in 1d
play

Detection of symmetry protected topological phases in 1D Frank - PowerPoint PPT Presentation

Detection of symmetry protected topological phases in 1D Frank Pollmann Max-Planck-Institut fr komplexer Systeme, Dresden, Germany FP. and A. M. Turner, arxiv:1204.0704 Florence, May. 29, 2012 Detection of symmetry protected topological


  1. Detection of symmetry protected topological phases in 1D Frank Pollmann Max-Planck-Institut für komplexer Systeme, Dresden, Germany FP. and A. M. Turner, arxiv:1204.0704 Florence, May. 29, 2012

  2. Detection of symmetry protected topological phases in 1D Overview • Introduction: Symmetry protected topological phases • Non-local order parameters • Summary Florence, May. 29, 2012

  3. Symmetry protected topological phases • Quantum phases : Two gapped quantum states belong to the same phase if they are adiabatically connected • Phases in condensed matter are usually understood using local order parameters (“symmetry breaking”) - Magnets : spin rotation and TR symmetry broken Magnetization as order parameter • Topological phases not characterized by any symmetry breaking • We introduce non-local order parameter for symmetry protected topological phases in 1D

  4. Symmetry protected topological phases • Example: Spin-1 chain [Haldane ‘83] ... ... j � S j · � j ( S z j ) 2 H = P S j +1 + D P | S z = ± 1 � , | S z = 0 � (time reversal, inversion, symmetry, ...) Z 2 × Z 2 “Haldane Phase” “Large D Phase” | 0 i | 0 i | 0 i | 0 i AKLT no symmetry Phase no symmetry D [Affleck ‘87] broken transition broken • Hidden symmetry breaking [Kennedy-Tasaki ’92] Z 2 × Z 2 • String order parameter [den Nijs ‘89]

  5. Symmetry protected topological phases • Spin-1 chain with less symmetries [Gu et al. ‘09] j ) 2 + B x j � S j · � j ( S z j S x H = J P S j +1 + D P P j   ➡ no symmetry Z 2 × Z 2       ➡ Haldane phase still well defined          Which symmetries are required? How to detect “topological” phases? ➡ Idea: Use entanglement and matrix- product states (capturing non-local properties)

  6. Symmetry protected topological phases Schmidt decomposition (SVD ) C = UDV † • Decompose a state into a | ψ i A B superposition of product states: • Schmidt states: , Schmidt values: • are eigenstates of the reduced density matrix with

  7. Symmetry protected topological phases • Example: Spin-1 Heisenberg chain j ~ S j · ~ H = P S j +1 0 10 N A N B X X | ψ 0 � C ij | i � A | j � B ... ... = A B i =1 j =1 X − 5 λ γ | φ γ � A | φ γ � B 10 = α γ λ 2 γ X ! λ 2 γ = 1 γ − 10 10 0 20 40 60 80 100 γ α • Schmidt values decay rapidly in ground states of gapped, local Hamiltonians ( area law! [Hastings et al. ’07] ): Matrix-Product representation

  8. Symmetry protected topological phases • Matrix product state (MPS) representation X B T A j 1 . . . A j L B | Ψ i = | j 1 , . . . , j L i | {z } j 1 ,...,j L ψ j 1 ,...,jL • Matrices not uniquely defined: Canonical Form is directly related to the Schmidt decomposition: A j = Γ j Λ [Vidal ’02]           1 . . . χ   ψ ...,j 1 ,j 2 ,... = 1 . . . d

  9. Symmetry protected topological phases • Matrices are directly related to the Schmidt decomposition             [ φ α ] j 1 ,j 2 ... = ... ... α A B • Left/right transfer matrices T have largest eigenvalue one with the identity as corresponding eigenstate                 | {z } T Σ ( αα 0 );( ββ 0 )

  10. Symmetry protected topological phases • Transformation of an MPS under symmetry operations [Perez-Garcia ’07]       Σ Σ              , [ U Σ , Λ ] = 0                                                          ...wave function only changes by a phase                     • Time reversal ( ) and inversion ( ) Γ j → Γ T Γ j → Γ ∗ j j • Matrices are projective representations which tell U Σ us about topological phases [FP et al. ’10, Chen et al ’11]

  11. Symmetry protected topological phases Use projective representations to classify phases! • Ground state is invariant under a symmetry group | ψ 0 � G with elements g 1 , g 2 , . . . , g n • Projective representation of the symmetry group U g j g j g k = g l : U g j U g k = e i φ jk U g l

  12. Symmetry protected topological phases Use projective representations to classify phases! • Ground state is invariant under a symmetry group | ψ 0 � G with elements g 1 , g 2 , . . . , g n • Projective representation of the symmetry group U g j g j g k = g l : U g j U g k = e i φ jk U g l • Phase ambiguities classify the phases (Schur classes) ➡ Complete classification of topological phases in 1D [FP , A. Turner, E. Berg, M. Oshikawa ’10, Chen et al ’11]

  13. Symmetry protected topological phases • Which symmetries stabilize topological phases? • Example : Rotation about single axis Z n R n = 1 ⇒ U n R = e i φ 1 ➡ Redefining removes the phase U R = e − i φ /n U R ˜ • Example : Phase for pairs Z 2 × Z 2 R x R y = R y R x ⇒ U R x U R y = e i φ xy U R y U R x ➡ Phases cannot be gauged φ = 0 , π away: topological phases

  14. Symmetry protected topological phases • Example S=1 AKLT state [Affleck ‘87] ➡ | ψ � =             • Matrix-product state representation Γ i = σ i , i = x, y, z • Rotations represented by Pauli matrices and Z 2 × Z 2 thus U R x U R y = − U R y U R x • Inversion symmetry with : U I = σ y U I U ∗ I = − 1 • Time reversal with : U T R U ∗ T R = − 1 U T R = σ y

  15. Symmetry protected topological phases • Framework to classify topological phases in 1D by looking at the “entanglement states” / MPS • “Topological” phase in a S=1 chain protected by - Z 2 × Z 2 - Inversion symmetry - Time reversal symmetry FP , E. Berg, A. M. Turner, and M. Oshikawa, Phys. Rev. B 81 , 064439 (2010) • Symmetry protected topological phases exist only in the presence of certain symmetries (not topologically ordered!)

  16. Symmetry protected topological phases • How can we detect which phase a given state belongs to? • We discuss two ways to detect topological phases : (1)Directly extract the projective representations from a matrix-product state representation (very useful for iTEBD / iDMRG ) [Vidal ’07] [McCulloch ’08] (2)Non-local order parameters for inversion, and time reversal symmetry and a generalized string-order for internal symmetries

  17. Non-local order parameter (1) • Get from the dominant eigenvector U Σ X of the generalized transfermatrix ( ) U Σ = X †                    X Σ jj 0 ˜ T Σ Γ j 0 , αβ Γ ∗ j, α 0 β 0 Λ β Λ β 0 ( αα 0 );( ββ 0 ) =           j,j 0                   • Overlap with transformed Schmidt states                                                   Σ       U Σ = X †           ⇔                                         | {z } | {z } T Σ X = X T 1 = 1

  18. Non-local order parameter (1) • S=1 chain j ) 2 + B P j ~ S j · ~ j ( S z j S x H = P S j +1 + D P • stabilizes Haldane phase if Z 2 × Z 2 B = 0 ⇢ and 0 if symmetry broken O Z 2 × Z 2 = if symmetry not broken . 1 � U x U z U † x U † � χ tr z                  iMPS obtained using the iTEBD / iDRMG method

  19. Non-local order parameter (1) • S=1 chain j ) 2 + B P j ~ S j · ~ j ( S z j S x H = P S j +1 + D P • Inversion symmetry stabilizes Haldane phase if B 6 = 0 ⇢ 0 if symmetry broken and O I = 1 χ tr ( U I U ∗ I ) if symmetry not broken .                  iMPS obtained using the iTEBD / iDRMG method

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend