detecting mixtures in multivariate extremes
play

Detecting mixtures in multivariate extremes S.H.A. Tendijck - PowerPoint PPT Presentation

Detecting mixtures in multivariate extremes S.H.A. Tendijck Lancaster University January 31, 2020 Motivating application 2 / 16 Motivating application 2 / 16 Two types of waves Swell versus wind waves: 3 / 16 Contents 1 Crash course in


  1. Detecting mixtures in multivariate extremes S.H.A. Tendijck Lancaster University January 31, 2020

  2. Motivating application 2 / 16

  3. Motivating application 2 / 16

  4. Two types of waves Swell versus wind waves: 3 / 16

  5. Contents 1 Crash course in underlying theory 2 My model

  6. Overview 1 Crash course in underlying theory 2 My model 5 / 16

  7. Univariate extremes 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 -10 -5 0 5 10 x 6 / 16

  8. Univariate extremes 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 -10 -5 0 5 10 x 6 / 16

  9. Univariate extremes 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 5 10 0.02 0 -10 -5 0 5 10 x 6 / 16

  10. Univariate extremes 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 5 10 0.02 0 -10 -5 0 5 10 x 6 / 16

  11. Multivariate extremes 7 / 16

  12. Multivariate extremes 7 / 16

  13. Multivariate extremes 7 / 16

  14. Multivariate extremes 7 / 16

  15. Conditional extremes 8 / 16

  16. Conditional extremes 8 / 16

  17. Conditional extremes 8 / 16

  18. Conditional extremes Heffernan-Tawn model: = α X + Y Z for ( X , Y ) on standard margins and Z some residual distribution, independent of X . 8 / 16

  19. Conditional extremes Heffernan-Tawn model: Y ∣( X > u ) = α X + Z for ( X , Y ) on standard margins and Z some residual distribution, independent of X . 8 / 16

  20. Conditional extremes Heffernan-Tawn model: Y ∣( X > u ) = α X + X β Z for ( X , Y ) on standard margins and Z some residual distribution, independent of X . 8 / 16

  21. Conditional extremes Heffernan-Tawn model: Y ∣( X > u ) = α X + X β Z for ( X , Y ) on standard margins and Z some residual distribution, independent of X . Pros: ● It can capture both asymptotic dependence ( α = 1) and asymptotic independence ( α < 1); ● Many bivariate distributions follow this structure asymptotically; ● Extends well to multivariate distributions. 8 / 16

  22. Conditional extremes Heffernan-Tawn model: Y ∣( X > u ) = α X + X β Z for ( X , Y ) on standard margins and Z some residual distribution, independent of X . Pros: ● It can capture both asymptotic dependence ( α = 1) and asymptotic independence ( α < 1); ● Many bivariate distributions follow this structure asymptotically; ● Extends well to multivariate distributions. Cons: ● It doesn’t capture mixture structures; ● Data needs to be on standard margins; ● Inconsistent in modelling X ∣ Y and Y ∣ X when both are large. 8 / 16

  23. Mixtures in extremes 10 8 6 Y L 4 2 0 -2 2 4 6 8 10 12 14 X L 9 / 16

  24. Mixtures in extremes 10 8 6 Y L 4 2 0 -2 2 4 6 8 10 12 14 X L 9 / 16

  25. Mixtures in extremes 10 8 6 Y L 4 2 0 -2 2 4 6 8 10 12 14 X L 9 / 16

  26. Mixtures in extremes The Heffernan-Tawn model extends to ⎧ ⎪ α 1 X + X β 1 Z 1 ⎪ with probability p ; Y ∣( X > u ) = ⎨ ⎪ α 2 X + X β 2 Z 2 with probability 1 − p . ⎪ ⎩ 9 / 16

  27. Mixtures in extremes The Heffernan-Tawn model extends to ⎧ ⎪ α 1 X + X β 1 Z 1 ⎪ with probability p ; Y ∣( X > u ) = ⎨ ⎪ α 2 X + X β 2 Z 2 with probability 1 − p . ⎪ ⎩ What do we want: ● Fit the model; ● Estimate the number of mixture components; ● Estimate the mixture probabilities. Methods: 1 Quantile-Regression model ; 2 Fitting a Heffernan-Tawn mixture model directly. 9 / 16

  28. Quantile Regression How do we estimate the 90% conditional quantile of Y given X ? 12 10 8 6 Y 4 2 0 -2 0 2 4 6 8 10 12 X 10 / 16

  29. Quantile Regression How do we estimate the 90% conditional quantile of Y given X ? 12 10 8 6 Y 4 2 0 -2 0 2 4 6 8 10 12 X 10 / 16

  30. Quantile Regression How do we estimate the 90% conditional quantile of Y given X ? 12 10 8 6 Y 4 2 0 -2 0 2 4 6 8 10 12 X 10 / 16

  31. Quantile Regression How do we estimate the 90% conditional quantile of Y given X ? 12 10 8 6 Y 4 2 0 -2 0 2 4 6 8 10 12 X 10 / 16

  32. Quantile Regression How do we estimate the 90% conditional quantile of Y given X ? 12 10 8 6 Y 4 2 0 -2 0 2 4 6 8 10 12 X Minimise the L 1 distance to the line, while keeping 90% below. 10 / 16

  33. Overview 1 Crash course in underlying theory 2 My model 11 / 16

  34. My model We assume the Heffernan-Tawn model holds, i.e., Y ∣( X > u ) = α X + X β Z . Our quantile regression model is given by α x + x β z . q τ ( x ) = 12 / 16

  35. My model We assume the Heffernan-Tawn model holds, i.e., Y ∣( X > u ) = α X + X β Z . Our quantile regression model is given by q τ ( x ) = c + α x + x β z . 12 / 16

  36. My model We assume the Heffernan-Tawn model holds, i.e., Y ∣( X > u ) = α X + X β Z . Our quantile regression model is given by q τ ( x ) = c + α x + x β z . For stability, we fit simultaneously for τ = 0 . 05 , 0 . 15 ,..., 0 . 95. We get 13 estimated parameters: α, ˆ ( ˆ z 10 ) . β, ˆ c , ˆ z 1 ,..., ˆ 12 / 16

  37. My model Logistic Model 15 10 Y 5 0 -5 2 4 6 8 10 12 X 12 / 16

  38. My model We assume a mixture HT model holds, i.e., ⎧ ⎪ α 1 X + X β 1 Z 1 with probability 1 − p , ⎪ Y ∣( X > u ) = ⎨ ⎪ α 2 X + X β 2 Z 2 ⎪ with probability p . ⎩ where α 1 > α 2 . 13 / 16

  39. My model We assume a mixture HT model holds, i.e., ⎧ ⎪ α 1 X + X β 1 Z 1 with probability 1 − p , ⎪ Y ∣( X > u ) = ⎨ ⎪ α 2 X + X β 2 Z 2 ⎪ with probability p . ⎩ where α 1 > α 2 . Our quantile regression model is given by ⎧ ⎪ c 1 + α 1 x + x β 1 z if τ > p , ⎪ q τ ( x ) ∼ ⎨ ⎪ c 2 + α 2 x + x β 2 z if τ < p , ⎪ ⎩ 13 / 16

  40. My model We assume a mixture HT model holds, i.e., ⎧ ⎪ α 1 X + X β 1 Z 1 with probability 1 − p , ⎪ Y ∣( X > u ) = ⎨ ⎪ α 2 X + X β 2 Z 2 ⎪ with probability p . ⎩ where α 1 > α 2 . Our quantile regression model is given by ⎧ ⎪ c 1 + α 1 x + x β 1 z if τ > p , ⎪ q τ ( x ) ∼ ⎨ ⎪ c 2 + α 2 x + x β 2 z if τ < p , ⎪ ⎩ For stability, we fit simultaneously for τ = 0 . 05 , 0 . 15 ,..., 0 . 95. We get 17 estimated parameters: α 2 , ˆ β 1 , ˆ ( ˆ z 10 ) . p , ˆ α 1 , ˆ β 2 , ˆ c 1 , ˆ c 2 , ˆ z 1 , ..., ˆ 13 / 16

  41. My model Asymmetric Logistic Model 15 10 5 Y 0 -5 -10 2 4 6 8 10 12 14 X 13 / 16

  42. Estimating the number of components Best fit with 1 mixture(s) 10 8 6 4 Y 2 0 -2 -4 -6 2 3 4 5 6 7 8 9 10 11 X 14 / 16

  43. Estimating the number of components Best fit with 1 mixture(s) Best fit with 2 mixture(s) 10 12 8 10 8 6 6 4 4 Y 2 Y 2 0 0 -2 -2 -4 -4 -6 -6 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 X X 14 / 16

  44. Estimating the number of components Best fit with 1 mixture(s) Best fit with 2 mixture(s) Best fit with 3 mixture(s) 10 12 12 8 10 10 8 8 6 6 6 4 4 4 Y 2 Y Y 2 2 0 0 0 -2 -2 -2 -4 -4 -4 -6 -6 -6 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 X X X Question: How can we compare? 14 / 16

  45. Estimating the number of components Best fit with 1 mixture(s) Best fit with 2 mixture(s) Best fit with 3 mixture(s) 10 12 12 8 10 10 8 8 6 6 6 4 4 4 Y 2 Y Y 2 2 0 0 0 -2 -2 -2 -4 -4 -4 -6 -6 -6 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 X X X Question: How can we compare? Method: 10-fold cross-validation. 14 / 16

  46. Estimating the number of components 10 4 1.206 1.204 Cross-Validation Statistics 1.202 1.2 1.198 1.196 1.194 1.192 1.19 1.188 1 2 3 4 5 6 7 8 9 Number of components 14 / 16

  47. Estimating the number of components 0.04 9 0.035 8 7 0.03 6 5 0.025 4 3 0.02 2 1 0.015 0.01 0.005 0 1.185 1.19 1.195 1.2 1.205 1.21 10 4 CV statistics density 14 / 16

  48. Assessing the model fit 20 15 10 Y 5 0 -5 2 4 6 8 10 12 X 15 / 16

  49. Assessing the model fit 20 15 10 Y 5 0 -5 2 4 6 8 10 12 X 15 / 16

  50. Assessing the model fit 20 15 10 Y 5 0 -5 2 4 6 8 10 12 X 15 / 16

  51. Assessing the model fit 20 15 10 Y 5 0 -5 2 4 6 8 10 12 X 15 / 16

  52. Assessing the model fit 20 15 10 Y 5 0 -5 2 4 6 8 10 12 X Method p ˆ 95% confidence interval Simulation Quantile Regression 15 / 16

  53. Assessing the model fit 20 15 10 Y 5 0 -5 2 4 6 8 10 12 X Method p ˆ 95% confidence interval Simulation 1 . 11 ⋅ 1 e − 5 ( 1 . 00 , 1 . 21 ) ⋅ 1 e − 5 Quantile Regression 0 . 90 ⋅ 1 e − 5 ?? 15 / 16

  54. Problems Is this method already perfect? 16 / 16

  55. Problems Is this method already perfect? No, there are just a couple of minor issues: 16 / 16

  56. Problems Is this method already perfect? No, there are just a couple of minor issues: 1 Cross-Validation statistics are not necessarily convex; 16 / 16

  57. Problems Is this method already perfect? No, there are just a couple of minor issues: 1 Cross-Validation statistics are not necessarily convex; 2 Not trivial how to fit this framework into a Bayesian setting; 16 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend