dependent type theory
play

Dependent Type Theory Lecture 1 Nicola Gambino MGS - Leicester - PowerPoint PPT Presentation

Dependent Type Theory Lecture 1 Nicola Gambino MGS - Leicester 2009 Nicola Gambino Dependent Type Theory References B. Nordstm, K. Petersson, and J. M. Smith Martin-Lfs Type Theory Handbook of Logic in Computer Science, Vol. 5


  1. Dependent Type Theory Lecture 1 Nicola Gambino MGS - Leicester 2009 Nicola Gambino Dependent Type Theory

  2. References B. Nordstöm, K. Petersson, and J. M. Smith Martin-Löf’s Type Theory Handbook of Logic in Computer Science, Vol. 5 Oxford University Press, 2001. B. Nordström, K. Petersson, and J. M. Smith Programming in Martin-Löf’s Type Theory Oxford University Press, 1990. Nicola Gambino Dependent Type Theory

  3. Outline Preliminaries 1 The dependent type theory ML 2 Nicola Gambino Dependent Type Theory

  4. Categorical judgements There are four forms of categorical judgements: A ∈ Type A = B ∈ Type a ∈ A a = b ∈ A These express, respectively, that: A is a type A and B are definitionally equal types a is an element of A a and b are definitionally equal elements of A . Nicola Gambino Dependent Type Theory

  5. Hypothetical judgements (I) There are four forms of hypothetical judgements: (Γ) A ∈ Type (Γ) A = B ∈ Type (Γ) a ∈ A (Γ) a = b ∈ A . Here Γ is a context of variable declarations of the form � � (Γ) = x 0 ∈ A 0 , x 1 ∈ A 1 ( x 0 ) , . . . , x n ∈ A n ( x 0 , . . . , x n − 1 ) . Nicola Gambino Dependent Type Theory

  6. Hypothetical judgements (II) For the context Γ to be well-formed we need to know that the judgements A 0 ∈ Type ( x 0 ∈ A 0 ) A 1 ( x 0 ) ∈ Type . . . � � x 0 ∈ A 0 , . . . , x n − 1 ∈ A n − 1 ( x 0 , . . . , x n − 2 ) A n ( x 0 , . . . , x n − 1 ) ∈ Type are derivable. Nicola Gambino Dependent Type Theory

  7. Deduction rules Deduction rules have the form (Γ 1 ) J 1 (Γ n ) J n · · · (Γ) J We often omit contexts that are common to premisses and conclusion. Nicola Gambino Dependent Type Theory

  8. Outline √ Preliminaries 1 The dependent type theory ML 2 Nicola Gambino Dependent Type Theory

  9. The dependent type theory ML (I) Two groups of rules: General deduction rules, e.g. (Γ) A ∈ Type (Γ , x ∈ A ) x ∈ A Deduction rules for the following forms of type: 0 , 1 , Nat , A + B , Id A ( a , b ) , (Σ x ∈ A ) B ( x ) , (Π x ∈ A ) B ( x ) . Nicola Gambino Dependent Type Theory

  10. The dependent type theory ML (II) For each form of type, we give four groups of deduction rules: Formation rules Introduction rules Elimination rules Computation rules Nicola Gambino Dependent Type Theory

  11. Deduction rules for the type of natural numbers (I) Formation rule: Nat ∈ Type Introduction rules: n ∈ Nat 0 ∈ Nat succ ( n ) ∈ Nat Nicola Gambino Dependent Type Theory

  12. Deduction rules for the type of natural numbers (II) Elimination rule: c ∈ Nat d ∈ C ( 0 ) ( x ∈ Nat , y ∈ C ( x )) e ( x , y ) ∈ C ( succ ( x )) natrec ( c , d , e ) ∈ C ( c ) Computation rules: d ∈ C ( 0 ) ( x ∈ Nat , y ∈ C ( x )) e ( x , y ) ∈ C ( succ ( x )) natrec ( 0 , d , e ) = d ∈ C ( 0 ) n ∈ Nat d ∈ C ( 0 ) ( x ∈ Nat , y ∈ C ( x )) e ( x , y ) ∈ C ( succ ( x )) natrec ( succ ( n ) , d , e ) = e ( n , natrec ( n , d , e )) ∈ C ( succ ( n )) Nicola Gambino Dependent Type Theory

  13. Deduction rules for the unit type (I) Formation rules: 1 ∈ Type Introduction rule: ∗ ∈ 1 Nicola Gambino Dependent Type Theory

  14. Deduction rules for the unit type (II) Elimination rule: c ∈ 1 d ∈ C ( ∗ ) rec ( c , d ) ∈ C ( c ) Computation rule: d ∈ C ( ∗ ) rec ( ∗ , d ) = d ∈ C ( ∗ ) Nicola Gambino Dependent Type Theory

  15. Deduction rules for the empty type (I) Formation rule: 0 ∈ Type Introduction rules: Nicola Gambino Dependent Type Theory

  16. Deduction rules for the empty type (II) Elimination rule: c ∈ 0 rec ( c ) ∈ C ( c ) Computation rules: Nicola Gambino Dependent Type Theory

  17. Deduction rules for sum types (I) Formation rules: A ∈ Type B ∈ Type A + B ∈ Type Introduction rules: a ∈ A b ∈ B inl ( a ) ∈ A + B inr ( b ) ∈ A + B Nicola Gambino Dependent Type Theory

  18. Deduction rules for sum types (II) Elimination rule: c ∈ A + B ( x ∈ A ) d ( x ) ∈ C ( inl ( x )) ( y ∈ B ) e ( y ) ∈ C ( inr ( y )) case ( c , d , e ) ∈ C ( c ) Computation rules: a ∈ A ( x ∈ A ) d ( x ) ∈ C ( inl ( x )) ( y ∈ B ) e ( y ) ∈ C ( inr ( y )) case ( inl ( a ) , d , e ) = d ( a ) ∈ C ( inl ( a )) ( x ∈ A ) d ( x ) ∈ C ( inl ( x )) ( y ∈ B ) e ( y ) ∈ C ( inr ( y )) b ∈ B case ( inr ( b ) , d , e ) = e ( b ) ∈ C ( inr ( b )) Nicola Gambino Dependent Type Theory

  19. Deduction rules for identity types (I) Formation rule: A ∈ Type a ∈ A b ∈ A Id A ( a , b ) ∈ Type Introduction rule: a ∈ A r ( a ) ∈ Id A ( a , a ) Nicola Gambino Dependent Type Theory

  20. Deduction rules for identity types (II) Elimination rule: p ∈ Id A ( a , b ) ( x ∈ A ) d ( x ) ∈ C ( x , x , r ( x )) J ( a , b , p , d ) ∈ C ( a , b , p ) Computation rule: a ∈ A ( x ∈ A ) d ( x ) ∈ C ( x , x , r ( x )) J ( a , a , r ( a ) , d ) = d ( a ) ∈ C ( a , a , r ( a )) Nicola Gambino Dependent Type Theory

  21. Deduction rules for Σ -types (I) Formation rule: ( x ∈ A ) B ( x ) ∈ Type (Σ x ∈ A ) B ( x ) ∈ Type Introduction rule: a ∈ A b ∈ B ( a ) pair ( a , b ) ∈ (Σ x ∈ A ) B ( x ) Nicola Gambino Dependent Type Theory

  22. Deduction rules for Σ -types (II) Elimination rule: c ∈ (Σ x ∈ A ) B ( x ) ( x ∈ A , y ∈ B ( x )) d ( x , y ) ∈ C ( pair ( x , y )) split ( c , d ) ∈ C ( c ) Computation rule: a ∈ A b ∈ B ( a ) ( x ∈ A , y ∈ B ( x )) d ( x , y ) ∈ C ( pair ( x , y )) split ( pair ( a , b ) , d ) = d ( a , b ) ∈ C ( pair ( a , b )) Nicola Gambino Dependent Type Theory

  23. Deduction rules for Π -types (I) Formation rule: ( x ∈ A ) B ( x ) ∈ Type (Π x ∈ A ) B ( x ) ∈ Type Introduction rule: ( x ∈ A ) b ( x ) ∈ B ( x ) ( λ x ∈ A ) b ( x ) ∈ (Π x ∈ A ) B ( x ) Nicola Gambino Dependent Type Theory

  24. Deduction rules for Π -types (II) Elimination rule: b ∈ (Π x ∈ A ) B ( x ) ∈ Type a ∈ A app ( b , a ) ∈ B ( a ) Computation rule: ( x ∈ A ) b ( x ) ∈ B ( x ) a ∈ A app (( λ x ∈ A ) b ( x ) , a ) = b ( a ) ∈ B ( a ) Nicola Gambino Dependent Type Theory

  25. Remarks We used ‘Type’ for what is called ‘Set’ in the Handbook paper. We did not use explicitly any logical framework. Nicola Gambino Dependent Type Theory

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend