degree degree correlations in directed networks with
play

Degree-degree correlations in directed networks with heavy-tailed - PowerPoint PPT Presentation

Degree-degree correlations in directed networks with heavy-tailed degrees Pim van der Hoorn Stochastic Operations Research Group, University of Twente EU FP7 grant 288956, NADINE June 13, 2013 Introduction Degree-degree correlations


  1. Degree-degree correlations in directed networks with heavy-tailed degrees Pim van der Hoorn Stochastic Operations Research Group, University of Twente EU FP7 grant 288956, NADINE June 13, 2013

  2. Introduction Degree-degree correlations Pearson correlation coefficients Rank correlations Results Example Future research

  3. Introduction [Pim van der Hoorn] 3/30

  4. Introduction ◮ Newman 2002 [Pim van der Hoorn] 3/30

  5. Introduction ◮ Newman 2002 ◮ Nelly Litvak, Remco van de Hofstad 2013 [Pim van der Hoorn] 3/30

  6. Introduction Degree-degree correlations Pearson correlation coefficients Rank correlations Results Example Future research

  7. Four types of correlations [Pim van der Hoorn] 5/30

  8. Four types of correlations [Pim van der Hoorn] 5/30

  9. Four types of correlations • [Pim van der Hoorn] 5/30

  10. Four types of correlations • • [Pim van der Hoorn] 5/30

  11. Four types of correlations • • Out - In [Pim van der Hoorn] 5/30

  12. Four types of correlations • • • • Out - In In - Out [Pim van der Hoorn] 5/30

  13. Four types of correlations • • • • Out - In In - Out • • • • Out - Out In - In [Pim van der Hoorn] 5/30

  14. Some notations G = ( V , E ) [Pim van der Hoorn] 6/30

  15. Some notations G = ( V , E ) G n = ( V n , E n ) [Pim van der Hoorn] 6/30

  16. Some notations G = ( V , E ) G n = ( V n , E n ) e ∗ e ∗ D + • • D − e [Pim van der Hoorn] 6/30

  17. Some notations G = ( V , E ) G n = ( V n , E n ) e ∗ e ∗ D + • • D − e α, β ∈ { + , − } [Pim van der Hoorn] 6/30

  18. Some notations G = ( V , E ) G n = ( V n , E n ) e ∗ e ∗ D + • • D − e D α ( e ∗ ) , D β ( e ∗ ) α, β ∈ { + , − } [Pim van der Hoorn] 6/30

  19. Some notations G = ( V , E ) G n = ( V n , E n ) e ∗ e ∗ D + • • D − e P ( D α > x ) = L α ( x ) x − γ α D α ( e ∗ ) , D β ( e ∗ ) α, β ∈ { + , − } [Pim van der Hoorn] 6/30

  20. Sequences of graphs Definition Let G γ − γ + denote the space of all sequences of graphs ( G n ) n ∈ N with the following properties: G1 | V n | = n G2 For all p ≥ γ + or q ≥ γ − , � n ( v ) q = Θ ( n max ( p /γ + , q /γ − , 1 ) ) . D + n ( v ) p D − v ∈ V n G3 There exist two independent regular varying random variables D + , D − such that for all p < γ + and q < γ − , � 1 n ( v ) q = E D + n ( v ) p D − ( D + ) p � ( D − ) q � � � lim . E n n →∞ v ∈ V n [Pim van der Hoorn] 7/30

  21. Introduction Degree-degree correlations Pearson correlation coefficients Rank correlations Results Example Future research

  22. General formula edges � 1 1 ρ β D α ( e ∗ ) D β ( e ∗ ) − ^ ρ β α ( G ) = α ( G ) σ α ( G ) σ β ( G ) | E | e ∈ E [Pim van der Hoorn] 9/30

  23. General formula edges � 1 1 ρ β D α ( e ∗ ) D β ( e ∗ ) − ^ ρ β α ( G ) = α ( G ) σ α ( G ) σ β ( G ) | E | e ∈ E � � 1 1 ρ β D α ( e ∗ ) D β ( e ∗ ) ^ α ( G ) = σ α ( G ) σ β ( G ) | E | 2 e ∈ E e ∈ E � � 2 � � � � � 1 1 � D α ( e ∗ ) 2 − D α ( e ∗ ) σ α ( G ) = | E | 2 | E | e ∈ E e ∈ E � � 2 � � � � � 1 1 D β ( e ∗ ) 2 − σ β ( G ) = � D β ( e ∗ ) | E | 2 | E | e ∈ E e ∈ E [Pim van der Hoorn] 9/30

  24. From edges to vertices � � D α ( e ∗ ) = D + ( v ) D α ( v ) e ∈ E v ∈ V � � D α ( e ∗ ) = D − ( v ) D α ( v ) e ∈ E v ∈ V [Pim van der Hoorn] 10/30

  25. General formula vertices � 1 1 ρ β D α ( e ∗ ) D β ( e ∗ ) − ^ ρ β α ( G ) = α ( G ) σ α σ β | E | e ∈ E [Pim van der Hoorn] 11/30

  26. General formula vertices � 1 1 ρ β D α ( e ∗ ) D β ( e ∗ ) − ^ ρ β α ( G ) = α ( G ) σ α σ β | E | e ∈ E � � 1 1 ρ β D + ( v ) D α ( v ) D − ( v ) D β ( v ) ^ α ( G ) = σ α σ β | E | 2 v ∈ V v ∈ V [Pim van der Hoorn] 11/30

  27. General formula vertices � 1 1 ρ β D α ( e ∗ ) D β ( e ∗ ) − ^ ρ β α ( G ) = α ( G ) σ α σ β | E | e ∈ E � � 1 1 ρ β D + ( v ) D α ( v ) D − ( v ) D β ( v ) ^ α ( G ) = σ α σ β | E | 2 v ∈ V v ∈ V � � 2 � � � � � 1 1 � D + ( v ) D α ( v ) 2 − D + D α ( v ) σ α ( G ) = | E | 2 | E | v ∈ V v ∈ V � � 2 � � � � � 1 1 � D − ( v ) D β ( v ) 2 − σ β ( G ) = D − ( v ) D β ( v ) | E | 2 | E | v ∈ V v ∈ V [Pim van der Hoorn] 11/30

  28. General formula vertices � 1 1 ρ β D α ( e ∗ ) D β ( e ∗ ) − ^ ρ β α ( G ) = α ( G ) σ α σ β | E | e ∈ E � � 1 1 ρ β D + ( v ) D α ( v ) D − ( v ) D β ( v ) ^ α ( G ) = σ α σ β | E | 2 v ∈ V v ∈ V � � 2 � � � � � 1 1 � D + ( v ) D α ( v ) 2 − D + D α ( v ) σ α ( G ) = | E | 2 | E | v ∈ V v ∈ V � � 2 � � � � � 1 1 � D − ( v ) D β ( v ) 2 − σ β ( G ) = D − ( v ) D β ( v ) | E | 2 | E | v ∈ V v ∈ V [Pim van der Hoorn] 11/30

  29. General formula vertices � 1 1 ρ β D α ( e ∗ ) D β ( e ∗ ) − ^ ρ β α ( G ) = α ( G ) σ α σ β | E | e ∈ E � � 1 1 ρ β D + ( v ) D α ( v ) D − ( v ) D β ( v ) ^ α ( G ) = σ α σ β | E | 2 v ∈ V v ∈ V � � 2 � � � � � 1 1 � D + ( v ) D α ( v ) 2 − D + D α ( v ) σ α ( G ) = | E | 2 | E | v ∈ V v ∈ V � � 2 � � � � � 1 1 � D − ( v ) D β ( v ) 2 − σ β ( G ) = D − ( v ) D β ( v ) | E | 2 | E | v ∈ V v ∈ V [Pim van der Hoorn] 11/30

  30. Convergence to a non-negative value Theorem α ⊂ R 2 such that for Let α, β ∈ { + , − } , then there exists an area A β ( γ + , γ − ) ∈ A β α and { G n } n ∈ N ∈ G γ − ,γ + ρ β n →∞ ^ lim α ( G n ) = 0 and hence n →∞ ρ β lim α ( G n ) ≥ 0 . [Pim van der Hoorn] 12/30

  31. Convergence areas A β α [Pim van der Hoorn] 13/30

  32. Convergence areas A β α γ − A − + 3 γ + 1 1 3 [Pim van der Hoorn] 13/30

  33. Convergence areas A β α γ − γ − A − A + + − 3 2 γ + γ + 1 1 1 3 1 2 [Pim van der Hoorn] 13/30

  34. Convergence areas A β α γ − γ − A − A + + − 3 2 γ + γ + 1 1 1 3 1 2 γ − γ − A + A − + − 3 γ + γ + 1 1 3 [Pim van der Hoorn] 13/30

  35. Outline of the proof [Pim van der Hoorn] 14/30

  36. Outline of the proof � 2 � � 2 � � � n ( v ) D β 1 v ∈ V D + n ( v ) D α 1 v ∈ V D − n ( v ) n ( v ) | E n | | E n | α ( G n ) 2 = ρ β ^ σ α ( G n ) 2 σ β ( G n ) 2 [Pim van der Hoorn] 14/30

  37. Outline of the proof � 2 � � 2 � � � n ( v ) D β 1 v ∈ V D + n ( v ) D α 1 v ∈ V D − n ( v ) n ( v ) | E n | | E n | α ( G n ) 2 = ρ β ^ σ α ( G n ) 2 σ β ( G n ) 2 a n = a n + b n − c n − d n [Pim van der Hoorn] 14/30

  38. Outline of the proof � 2 � � 2 � � � n ( v ) D β 1 v ∈ V D + n ( v ) D α 1 v ∈ V D − n ( v ) n ( v ) | E n | | E n | α ( G n ) 2 = ρ β ^ σ α ( G n ) 2 σ β ( G n ) 2 a n = a n + b n − c n − d n � n c + n d � n a � � a n c n + d n = Θ = Θ n b n b b n b n n a n b � � � � a n b n = Θ = Θ n c + n d n c + n d c n + d n c n + d n [Pim van der Hoorn] 14/30

  39. Outline of the proof continued... [Pim van der Hoorn] 15/30

  40. Outline of the proof continued... ( a < b ∧ max ( c , d ) < b ) ∨ ( a < max ( c , d ) ∧ b < max ( c , d )) [Pim van der Hoorn] 15/30

  41. Outline of the proof continued... ( a < b ∧ max ( c , d ) < b ) ∨ ( a < max ( c , d ) ∧ b < max ( c , d )) a n c n + d n lim = 0 and lim = 0 b n b n n →∞ n →∞ or a n b n lim = 0 and lim = 0 c n + d n c n + d n n →∞ n →∞ [Pim van der Hoorn] 15/30

  42. Outline of the proof continued... ( a < b ∧ max ( c , d ) < b ) ∨ ( a < max ( c , d ) ∧ b < max ( c , d )) a n c n + d n lim = 0 and lim = 0 b n b n n →∞ n →∞ or a n b n lim = 0 and lim = 0 c n + d n c n + d n n →∞ n →∞ a n ⇒ lim = 0 a n + b n − c n − d n n →∞ [Pim van der Hoorn] 15/30

  43. Outline of the proof continued... ( a < b ∧ max ( c , d ) ≤ b ) ∨ ( a < max ( c , d ) ∧ b ≤ max ( c , d )) a n c n + d n lim = 0 and lim = 0 b n b n n →∞ n →∞ or a n b n lim = 0 and lim = 0 c n + d n c n + d n n →∞ n →∞ a n ⇒ lim = 0 a n + b n − c n − d n n →∞ [Pim van der Hoorn] 15/30

  44. Outline of the proof continued... ( a < b ∧ max ( c , d ) ≤ b ) ∨ ( a < max ( c , d ) ∧ b ≤ max ( c , d )) a n c n + d n lim = 0 and lim = 0 b n b n n →∞ n →∞ or a n b n lim = 0 and lim = 0 c n + d n c n + d n n →∞ n →∞ a n ⇒ lim = 0 a n + b n − c n − d n n →∞ [Pim van der Hoorn] 15/30

  45. Issues [Pim van der Hoorn] 16/30

  46. Issues ◮ Graph model with heavy tails have non-negative degree-degree correlation limit [Pim van der Hoorn] 16/30

  47. Issues ◮ Graph model with heavy tails have non-negative degree-degree correlation limit ◮ Degree-degree correlations cannot be compared for different sizes [Pim van der Hoorn] 16/30

  48. Introduction Degree-degree correlations Pearson correlation coefficients Rank correlations Results Example Future research

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend