decision tree learning inspired dynamic variable ordering
play

Decision Tree Learning-Inspired Dynamic Variable Ordering for the - PowerPoint PPT Presentation

Decision Tree Learning-Inspired Dynamic Variable Ordering for the Weighted CSP Hong Xu Kexuan Sun Sven Koenig T. K. Satish Kumar hongx@usc.edu, kexuansu@usc.edu, skoenig@usc.edu, tkskwork@gmail.com May, 2020 University of Southern California


  1. Decision Tree Learning-Inspired Dynamic Variable Ordering for the Weighted CSP Hong Xu Kexuan Sun Sven Koenig T. K. Satish Kumar hongx@usc.edu, kexuansu@usc.edu, skoenig@usc.edu, tkskwork@gmail.com May, 2020 University of Southern California the 13th International Symposium on Combinatorial Search (SoCS 2020)

  2. Agenda The Weighted Constraint Satisfaction Problem (WCSP) Branch-and-Bound Search and Dynamic Variable Ordering (DVO) Our Decision-Tree Learning Inspired Dynamic Variable Ordering Experimental Evaluation Conclusion 1

  3. Executive Summary • Branch-and-bound search has been the state of the art paradigm for solving the WCSP. • Dynamic variable ordering (DVO) is a critical component of branch-and-bound search. • Our newly proposed DVO algorithms, inspired by decision tree learning, have shown superior performance in our preliminary experiments. 2

  4. Agenda The Weighted Constraint Satisfaction Problem (WCSP) Branch-and-Bound Search and Dynamic Variable Ordering (DVO) Our Decision-Tree Learning Inspired Dynamic Variable Ordering Experimental Evaluation Conclusion

  5. The Weighted Constraint Satisfaction Problem: Motivation Many real-world problems can be solved using the WCSP: • RNA motif localization (Zytnicki et al. 2008) • Communication through noisy channels using Error Correcting Codes in Information Theory (Yedidia et al. 2003) • Medical and mechanical diagnostics (Milho et al. 2000; Muscettola et al. 1998) • Energy minimization in Computer Vision (Kolmogorov 2005) 3 • · · ·

  6. Weighted Constraint Satisfaction Problem (WCSP) assignments of values to a subset s of the variables. • Find an optimal assignment of values to these variables so as to • Known to be NP-hard. 4 • N variables x = { X 1 , X 2 , . . . , X N } . • Each variable X i has a discrete-valued domain D i . • M weighted constraints { E s 1 , E s 2 , . . . , E s M } . • Each constraint E s specifjes the weight for each combination of minimize the total weight: E ( x ) = � M i = 1 E s i ( x s i ) .

  7. WCSP Example on Boolean Variables 5 X 1 X 2 X 3 X 2 0 0.7 0 0.3 0 0.1 1 0.2 1 0.8 1 1.0 X 1 X 3 X 2 X 3 X 3 X 1 0 1 X 2 0 1 X 1 0 1 0 0.5 0.6 0 0.6 1.3 0 0.4 0.9 1 0.7 0.3 1 1.0 1.1 1 0.7 0.8 E ( X 1 , X 2 , X 3 ) = E 1 ( X 1 ) + E 2 ( X 2 ) + E 3 ( X 3 )+ E 12 ( X 1 , X 2 ) + E 13 ( X 1 , X 3 ) + E 23 ( X 2 , X 3 )

  8. 6 (This is not an optimal solution.) WCSP Example: Evaluate the Assignment X 1 = 0 , X 2 = 0 , X 3 = 1 X 1 X 2 X 3 X 2 0 0.7 0 0.3 0 0.1 1 0.2 1 0.8 1 1.0 X 1 X 3 X 2 X 3 X 3 X 1 0 1 X 2 0 1 X 1 0 1 0 0.5 0.6 0 0.6 1.3 0 0.4 0.9 1 0.7 0.3 1 1.0 1.1 1 0.7 0.8 E ( X 1 = 0 , X 2 = 0 , X 3 = 1 ) = 0 . 7 + 0 . 3 + 1 . 0 + 0 . 5 + 1 . 3 + 0 . 9 = 4 . 7

  9. 7 This is an optimal solution. Using brute force, it requires exponential time to fjnd. WCSP Example: Evaluate the Assignment X 1 = 1 , X 2 = 0 , X 3 = 0 X 1 X 2 X 3 X 2 0 0.7 0 0.3 0 0.1 1 0.2 1 0.8 1 1.0 X 1 X 3 X 2 X 3 X 3 X 1 0 1 X 2 0 1 X 1 0 1 0 0.5 0.6 0 0.6 1.3 0 0.4 0.9 1 0.7 0.3 1 1.0 1.1 1 0.7 0.8 E ( X 1 = 1 , X 2 = 0 , X 3 = 0 ) = 0 . 2 + 0 . 3 + 0 . 1 + 0 . 7 + 0 . 6 + 0 . 7 = 2 . 6

  10. Agenda The Weighted Constraint Satisfaction Problem (WCSP) Branch-and-Bound Search and Dynamic Variable Ordering (DVO) Our Decision-Tree Learning Inspired Dynamic Variable Ordering Experimental Evaluation Conclusion

  11. Branch-and-Bound Search Search by assigning value to one variable at a time until the optimal solution is found. Backtrack when needed. Each search node consists of • an assignment of value to a subset of variables and the total weight of constraints between all assigned variables w a At each search node: 2. Enforce local consistency. 3. Compute w a . 6. Go to 1 (next search node). 8 • the total weight of currently best solution w † 1. Choose a variable X k assign a value x k to it. (Dynamic Variable Ordering) 4. If all variables have been assigned and w a < w † , then w † := w a and backtrack. 5. If w a ≥ w † , backtrack.

  12. Dynamic Variable Ordering (DVO): Example of Two Search Orders X 3 nodes. Found the optimal solution by visiting 14 search … (b) Constraint C 2 A 3-variable WCSP 2 1 3 1 0 1 0 4 X 2 1 instance: X 1 X 2 (a) Constraint C 1 0 9 0 1 300 1 200 400 X 1 → X 2 → X 3 , fjrst 0 then 1 w a = 0 , w † = ∞ X 1 = 0 w a = 400 , w † = ∞ X 1 = 0 , X 2 = 0 w a = 401 , w † = 401 X 1 = 0 , X 2 = 0 , X 3 = 0 w a = 402 , w † = 401 X 1 = 0 , X 2 = 0 , X 3 = 1 w a = 300 , w † = 7 X 1 = 0 , X 2 = 1 w a = 302 , w † = 302 X 1 = 0 , X 2 = 1 , X 3 = 0 w a = 3 , w † = 3 X 1 = 1 , X 2 = 1 , X 3 = 0 w a = 5 , w † = 5 X 1 = 1 , X 2 = 1 , X 3 = 1

  13. Dynamic Variable Ordering (DVO): Example of Two Search Orders X 2 search nodes. (b) Constraint C 2 4 A 3-variable WCSP 1 3 1 0 1 0 X 3 2 (a) Constraint C 1 0 instance: 1 X 1 X 2 10 1 0 400 300 200 1 X 1 → X 2 → X 3 , fjrst 1 then 0 w a = 0 , w † = ∞ X 1 = 1 w a = 1 , w † = ∞ X 1 = 1 , X 2 = 1 w a = 5 , w † = 5 X 1 = 1 , X 2 = 1 , X 3 = 1 w a = 3 , w † = 3 X 1 = 1 , X 2 = 1 , X 3 = 0 w a = 200 , w † = 3 X 1 = 1 , X 2 = 0 w a = 0 , w † = 3 X 1 = 0 w a = 300 , w † = 3 X 1 = 0 , X 2 = 1 w a = 400 , w † = 3 X 1 = 0 , X 2 = 0 Found the optimal solution by visiting only 8

  14. Agenda The Weighted Constraint Satisfaction Problem (WCSP) Branch-and-Bound Search and Dynamic Variable Ordering (DVO) Our Decision-Tree Learning Inspired Dynamic Variable Ordering Experimental Evaluation Conclusion

  15. Intuition 1 (c) Search tree X 1 (b) Constraint C 2 101 3 102 1 3 2 1 0 2 11 0 X 3 X 2 (a) Constraint C 1 3 102 1 2 1 0 1 0 X 2 ������ ������ X 1 X 3 X 2 0 2 0 1 0 1 1 ����� � � ����� �� �� �� �� ��� ��� ��� ��� �� ��

  16. Measurement The measurement can be based on sampling and computing: • sdr the standard deviation, or • rr the range of weights in the samples (i.e., the maximum weight minus the minimum weight). 12

  17. Agenda The Weighted Constraint Satisfaction Problem (WCSP) Branch-and-Bound Search and Dynamic Variable Ordering (DVO) Our Decision-Tree Learning Inspired Dynamic Variable Ordering Experimental Evaluation Conclusion

  18. Setup • Our algorithms: sdr , rr , sdr-bound , rr-bound • Competitors • deg , dom , suc ((Heras et al. 2006)) • wdeg , dom/wdeg ((Boussemart et al. 2004)) • abs ((Michel et al. 2012)) • ibs ((Refalo 2004)) • sdr-inv , sdr-inv-bound , rr-inv , rr-inv-bound (Use the reverse of the measurements of sdr , sdr-bound , rr , rr-bound ) 13

  19. Setup • Benchmarks: • (Hurley et al. 2016) • Limited choice to at most 25 variables and domain size no more than 6. • Only 6 instances satisfy the condition. • Due to the scarcity of real-world instances, we also created random instances: • Create n variables, • randomly assign weights from 1 to 100. • We generated 50 such instances for each n ranging from 12 to 20. 14 • add a constraint between every two variables with probability p = 0 . 1,

  20. Real-World Instances 659/1.58s 331/0.08s 8623/5.24s dom -/48h -/48h 187/0.04s 3225/1.26s deg -/48h -/48h 6/0.94s 10/0.08s inv-rr-bound -/48h -/48h -/48h 429/0.29s 5943/11.97s inv-rr -/48h -/48h 6/0.94s 8/0.08s Instance inv-sdr-bound -/48h -/48h -/48h -/48h 5491/1.64s -/48h -/48h -/48h -/48h 236/0.08s 7045/4.53s ibs -/48h -/48h 404/0.33s 3173/2.73s abs -/48h -/48h suc 331/0.08s 8623/5.29s dom/wdeg -/48h -/48h -/48h 203/0.15s 8623/5.37s wdeg -/48h -/48h 606/0.12s 3491/1.72s 179/0.05s 667/1.80s 15 196 sdr inv-sdr 4 3 5 6 2 5 D 185 185 185 32 3 101/0.05s 25 25 25 8 28 2 q4 q3 q5 l4 j4 ff1 Name 833/0.27s Algorithm -/48h 665/1.71s 1100/9.95s 109/0.16s rr-bound -/48h 801/2.16s rr -/48h -/48h 6/0.94s -/48h 11/0.04s 637/1.60s 11/0.08s 6/0.97s sdr-bound -/48h -/48h -/48h |X| |C| ˆ 31/3 · 10 − 4 s 391 , 065/4042s 31/3 · 10 − 4 s 31/3 · 10 − 4 s 31/1 · 10 − 2 s 31/2 · 10 − 4 s 429 , 005/4984s 31/2 · 10 − 4 s 31/2 · 10 − 4 s 14 , 677/44.78s 31/2 · 10 − 4 s 31/1 · 10 − 4 s 27 , 834 , 834/48 , 163s 31/9 · 10 − 5 s 31/9 · 10 − 5 s 7 , 718 , 377/8867s 31/9 · 10 − 5 s 31/9 · 10 − 5 s 31/2 · 10 − 4 s 1 , 814 , 781/911s 31/1 · 10 − 4 s

  21. 16 10 4 Running Time (seconds) 10 3 10 2 10 1 deg abs ibs dom 10 0 suc sdr wdeg rr 10 1 dom/wdeg 0 10 20 30 40 50 Number of Benchmark Instances

  22. 17 Average Running Time (seconds) Average Number of Visted Nodes deg 0.319 abs 0.371 deg 0.294 abs 0.336 10 2 10 7 dom 0.346 ibs 0.349 dom 0.307 ibs 0.309 sdr 0.326 suc 0.371 suc 0.341 sdr 0.293 wdeg 0.360 rr 0.319 wdeg 0.323 rr 0.282 dom/wdeg 0.348 10 6 dom/wdeg 0.307 10 1 10 5 ( T ) ( K ) 10 4 10 0 10 3 0 12 14 16 18 20 12 14 16 18 20 Number of Variables ( n ) Number of Variables ( n )

  23. Agenda The Weighted Constraint Satisfaction Problem (WCSP) Branch-and-Bound Search and Dynamic Variable Ordering (DVO) Our Decision-Tree Learning Inspired Dynamic Variable Ordering Experimental Evaluation Conclusion

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend