cumulants ratios of conserved charge fluctuations a
play

Cumulants ratios of conserved charge fluctuations: A comparison of - PowerPoint PPT Presentation

Cumulants ratios of conserved charge fluctuations: A comparison of lattice QCD and experimental results Christian Schmidt BNL-Bi-CCNU Collaboration: A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, S. Mukherjee, P.


  1. Cumulants ratios of conserved charge fluctuations: A comparison of lattice QCD and experimental results Christian Schmidt BNL-Bi-CCNU Collaboration: A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, S. Mukherjee, P. Petreczky, C. Schmidt, W. Soeldner, M. Wagner 1 Christian Schmidt Sign2015, Debrecen, Hungary

  2. Motivation: The QCD phase diagram Expected phase diagram of QCD: QCD T [MeV] critical end-point quark-gluon-plasma 154(9) hadron gas vacuum nuclear matter neutron stars 0 chemical potential µ B Critical end-point? 2 Christian Schmidt Sign2015, Debrecen, Hungary

  3. Motivation: The QCD phase diagram Expected phase diagram of QCD: QCD T [MeV] critical end-point quark-gluon-plasma 154(9) hadron gas vacuum nuclear matter neutron stars 0 chemical potential µ B Critical end-point? ⇒ Diverging correlation length and fluctuations. Universal behavior within a scaling region. 2 Christian Schmidt Sign2015, Debrecen, Hungary

  4. Motivation: The QCD phase diagram Expected phase diagram of QCD: QCD T [MeV] what we really know... 154(9) vacuum nuclear matter neutron stars 0 chemical potential µ B Critical end-point? 3 Christian Schmidt Sign2015, Debrecen, Hungary

  5. Motivation: The QCD phase diagram Expected phase diagram of QCD: QCD T [MeV] what we really know... 154(9) vacuum nuclear matter neutron stars 0 chemical potential µ B Critical end-point? ⇒ Diverging correlation length and fluctuations. Universal behavior within a scaling region. 3 Christian Schmidt Sign2015, Debrecen, Hungary

  6. Motivation: The QCD phase diagram Quark mass dependance of the phase diagram: More critical T 2nd order, O(4) points! 2nd order, Z(2) 1st order Lattice crossover Experiment (freeze-out) Is physics on the freeze-out line sensitive to QCD critical behavior? µ tri µ CEP B B µ B m phys u,d m u,d 4 Christian Schmidt Sign2015, Debrecen, Hungary

  7. Experimental efforts: Beam Energy Scan Initial conditions: depend on collision energy , √ s NN hydrodynamic evolution the system size (type of ion), the impact parameter, ... dN/dy s =200 GeV NN 2 10 10 Data 1 STAR PHENIX BRAHMS Chemical freeze-out: defines the moment � 1 10 Model, 2 /N =29.7/11 � from where particle abundance are fixed df 3 T=164 MeV, = 30 MeV, V=1950 fm µ b (up to particle decays), parametrized by + � � + � + K K p p � � � � � d d K* * * � � � � � Andronic, Braun-Munzinger, T f ( √ s ) , µ f ( √ s ) , V f ( √ s ) Stachel, PLB 673 (2009) 142. 5 Christian Schmidt Sign2015, Debrecen, Hungary

  8. Experimental efforts: Beam Energy Scan � κσ 2 = χ 4 / χ 2 √ s X. Luo, CPOD’14 intriguing non-monotonic behavior ⇒ � in the cumulant ratio of net-proton number fluctuations 6 Christian Schmidt Sign2015, Debrecen, Hungary � ��

  9. Experimental efforts: Beam Energy Scan � κσ 2 = χ 4 / χ 2 √ s X. Luo, CPOD’14 Can this data be understood in terms of equilibrium thermodynamics? � 7 Christian Schmidt Sign2015, Debrecen, Hungary � ��

  10. Experimental efforts: Beam Energy Scan � κσ 2 = χ 4 / χ 2 X. Luo, CPOD’14 Can this data be understood in terms of equilibrium thermodynamics? � How far do we get with a low order Taylor expansion? 8 Christian Schmidt Sign2015, Debrecen, Hungary � ��

  11. Motivation: The QCD phase diagram Lattice 2015 -- Curvature of the phase diagram Are the curvature of the Bielefeld-BNL P4, Nt=8, PRD 83 (2011) 014504 crossover temperature and Bielefeld-CCNU HISQ Nt=6 Taylor the freeze-out curve considerably different ? Cea et al HISQ Nt=6,8,10,12 Analytical [1508.07599] Pisa 2stout Nt=6,8,10,12 Analytical [1507.03571] T [MeV] Wuppertal 4stout Nt=10,12,16 Analytical [1507.07510] J. Cleymans et al., PRC 73, 034905 (2006). 154(9) Figure taken from S. Borsanyi, QM2015 (modified) 0.005 0.015 0.025 0.01 0.02 0.03 0 vacuum nuclear matter neutron stars 0 chemical potential µ B 9 Christian Schmidt Sign2015, Debrecen, Hungary

  12. Content 1) Introduction and Motivation 2) Taylor expansion of pressure • definitions, state-of-the-art, convergence estimate 2) Cumulant ratios at nonzero baryon number density µ f • determination of freeze-out parameter, expressing by M B / σ 2 B B • RHIC data vs. QCD equilibrium thermodynamics • constraints: strangeness neutrality, constant baryon number to electric charge ratio 3) Conclusions and Summary 10 Christian Schmidt Sign2015, Debrecen, Hungary

  13. Taylor expansion of the pressure 11 Christian Schmidt 2 nd Heavy Ion Collisions in the LHC era and Beyond

  14. Conserved charge fluctuations Expansion of the pressure: ◆ i ✓ µ Q ◆ j ✓ µ S ◆ k ∞ 1 ✓ µ B p X i ! j ! k ! χ BQS T 4 = ijk, 0 T T T i,j,k =0 X = B, Q, S : conserved charges Lattice Experiment V T 3 χ X ( δ N X ) 2 ↵ ⌦ ∂ n [ p/T 4 ] = � 2 χ X � n = � V T 3 χ X ( δ N X ) 2 ↵ 2 ∂ ( µ X /T ) n ⌦ ( δ N X ) 4 ↵ ⌦ = − 3 � µ X =0 4 V T 3 χ X ( δ N X ) 4 ↵ ⌦ = generalized susceptibilities 6 ( δ N X ) 4 ↵ ⌦ ( δ N X ) 2 ↵ ⌦ − 15 ( δ N X ) 2 ↵ 3 ⌦ only at ! +30 ⇒ µ X = 0 cumulants of net-charge fluctuations δ N X ⌘ N X � h N X i ⇒ only at freeze-out ( )! µ f ( √ s ) , T f ( √ s ) 12 Christian Schmidt Sign2015, Debrecen, Hungary

  15. Conserved charge fluctuations Expansion of the pressure: ◆ i ✓ µ Q ◆ j ✓ µ S ◆ k ∞ 1 ✓ µ B p X i ! j ! k ! χ BQS T 4 = ijk, 0 T T T i,j,k =0 X = B, Q, S : conserved charges consider cumulant ratios to eliminate the freeze-out volume Lattice Experiment χ X 1 ( µ B , T ) M X M := mean = χ X 2 ( µ B , T ) σ 2 variance X σ 2 := χ X 3 ( µ B , T ) skewness S := S X σ X = χ X 2 ( µ B , T ) kurtosis κ := χ X 4 ( µ B , T ) κ X σ 2 = X χ X 2 ( µ B , T ) 13 Christian Schmidt Sign2015, Debrecen, Hungary

  16. State-of-the-art equation of state for (2+1)-flavor pressure , energy density and entropy density , at : µ B = µ Q = µ S = 0 p ε s Bazavov et al. [HotQCD], Phys. Rev. D90 (2014) 094503. • improves over earlier HotQCD • up to the crossover region the QCD calculation Bazavov et al. [HotQCD], EoS agrees well with the HRG EoS, Phys. Rev. D80 (2009) 014504. however, QCD results are systematically above HRG • consistent with results from Budapest-Wuppertal (stout) evidence for additional ⇒ S. Borsanyi et al. [WB] Phys. Lett. hadronic states? B730 (2014) 99 14 Christian Schmidt Sign2015, Debrecen, Hungary

  17. The equation of state at µ B > 0 chemical potential dependent part: ratios are unity in the HRG ∞ χ B = P ( T, µ B ) � P ( T, 0) 2 n ( T ) ⇣ µ B ⌘ 2 n X P/T 4 � � ∆ = T 4 (2 n )! T n =1 χ B χ B ✓ ◆ = 1 1 + 1 4 ( T ) 1 6 ( T ) 2 χ B µ 2 µ 2 µ 4 2 ( T )ˆ 2 ( T ) ˆ B + 2 ( T ) ˆ B + ... B χ B χ B 12 360 LO NLO NNLO with µ B = µ B /T ˆ 0.35 1.2 LO NLO B / χ 2 B B free � 2 χ 4 hadron resonance gas 0.3 1 0.25 0.8 N τ =6 0.2 8 continuum extrap. 0.6 N � =12 0.15 BNL-Bielefeld 8 preliminary 6 0.4 0.1 PDG-HRG 0.2 0.05 free quark gas T [MeV] T [MeV] 0 0 120 140 160 180 200 220 240 260 280 120 140 160 180 200 220 240 260 280 15 Christian Schmidt Sign2015, Debrecen, Hungary

  18. The equation of state at µ B > 0 chemical potential dependent part: ratios are unity in the HRG ∞ χ B = P ( T, µ B ) � P ( T, 0) 2 n ( T ) ⇣ µ B ⌘ 2 n X P/T 4 � � ∆ = T 4 (2 n )! T n =1 χ B χ B ✓ ◆ = 1 1 + 1 4 ( T ) 1 6 ( T ) 2 χ B µ 2 µ 2 µ 4 2 ( T )ˆ 2 ( T ) ˆ B + 2 ( T ) ˆ B + ... B χ B χ B 12 360 LO NLO NNLO with µ B = µ B /T ˆ 16 Christian Schmidt Sign2015, Debrecen, Hungary

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend