ctp431 music and audio computing sound synthesis
play

CTP431- Music and Audio Computing Sound Synthesis Graduate School - PowerPoint PPT Presentation

CTP431- Music and Audio Computing Sound Synthesis Graduate School of Culture Technology KAIST Juhan Nam 1 Musical Sound Synthesis Modeling the patterns of musical tones and generating them (Typical) musical tones Time-wise: amplitude


  1. CTP431- Music and Audio Computing Sound Synthesis Graduate School of Culture Technology KAIST Juhan Nam 1

  2. Musical Sound Synthesis § Modeling the patterns of musical tones and generating them § (Typical) musical tones – Time-wise: amplitude envelope (ADSR) à Waveform – Frequency-wise : harmonic distribution à Spectrogram § How are musical tones different from other sounds (e.g. speech)? 2

  3. Types of Tones § Musical tones have more diverse types – Harmonic: guitar, flute, violin, organ, singing voice (vowel) – Inharmonic: piano, vibraphone – Non-harmonic: drum, percussion, singing voice (consonant) [From Klapuri’s slides] Vibraphone *Inharmonicity in Piano 3

  4. Information in Tones § Musical tones have the main information in “pitch” – Speech Tones have it mainly in “formant (i.e. spectral envelop)” § Examples – Original music : – Reconstruction from timbre features (MFCC) and using white-noise as a source): – Reconstruction from tonal features (Chroma): 4

  5. Pitch Scale and Range § In music, pitch is arranged on a tuning system and the range is much wider 4000 3500 3000 2500 frequency − Hz 2000 1500 1000 500 0 10 20 30 40 50 time [second] 5

  6. Control of Tones § Musical Instrument Note Number , Music Velocity, Output Synthesizer Duration (+ Expressions) § Speech Speech Phonemes Output Synthesizer (+ Expressions) 6

  7. Overview of Sound Synthesis Techniques § Signal model (analog / digital) – Additive Synthesis – Subtractive Synthesis – Modulation Synthesis: ring modulation, frequency modulation – Distortion Synthesis: non-linear § Sample model (digital) – Sampling Synthesis – Granular Synthesis – Concatenative Synthesis § Physical model (digital) – Digital Waveguide Model 7

  8. Theremin § A sinusoidal tone generator § Two antennas are remotely controlled to adjust pitch and volume Theremin ( by Léon Theremin, 1928)

  9. Theremin (Clara Rockmore) https://www.youtube.com/watch?v=pSzTPGlNa5U 9

  10. Additive Synthesis § Synthesize sounds by adding multiple sine oscillators – Also called Fourier synthesis OSC Amp (Env) OSC Amp (Env) + . . . . . . OSC Amp (Env) 10

  11. Hammond Organ § Drawbars – Control the levels of individual tonewheels 11

  12. Hammond Organ https://www.youtube.com/watch?v=2rqn4bYFUZU 12

  13. Sound Examples § Web Audio Demo – http://femurdesign.com/theremin/ – http://www.venlabsla.com/x/additive/additive.html – http://codepen.io/anon/pen/jPGJMK § Examples (instruments) – Kurzweil K150 • https://soundcloud.com/rosst/sets/kurzweil-k150-fs-additive – Kawai K5, K5000 13

  14. Subtractive Synthesis § Synthesize sounds by filtering wide-band oscillators – Source-Filter model – Examples • Analog Synthesizers: oscillators + resonant lowpass filters • Voice Synthesizers: glottal pulse train + formant filters 20 20 20 10 10 10 0 0 0 Magnitude (dB) Magnitude (dB) Magnitude (dB) − 10 − 10 − 10 − 20 − 20 − 20 − 30 − 30 − 30 − 40 − 40 − 40 − 50 − 50 − 50 − 60 − 60 − 60 5 10 15 20 5 10 15 20 0 0.5 1 1.5 2 2.5 Frequency (kHz) Frequency (kHz) Frequency (kHz) 4 x 10 Filtered Source Source Filter 14

  15. Moog Synthesizers Soft Envelope LFO Control Keyboard Physical Envelope Control Wheels Slides Pedal Parameter Parameter Parameter Audio Path Amp Oscillators Filter (e.g. filter Parameter = offset + depth*control cut-off frequency) (static value) (dynamic value) 15

  16. Oscillators § Classic waveforms 2 2 1 0 0 0 − 2 − 1 − 2 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 20 20 20 Magnitude (dB) Magnitude (dB) Magnitude (dB) − 12dB/oct − 6dB/oct 0 − 6dB/oct 0 0 − 20 − 20 − 20 − 40 − 40 − 40 − 60 − 60 − 60 5 10 15 20 5 10 15 20 5 10 15 20 Frequency (kHz) Frequency (kHz) Frequency (kHz) Triangular Sawtooth Square § Modulation – Pulse width modulation – Hard-sync – More rich harmonics 16

  17. Amp Envelop Generator § Amplitude envelope generation – ADSR curve: attack, decay, sustain and release – Each state has a pair of time and target level Amplitude Attack Decay Sustain (dB) Release Note On Note Off 17

  18. Examples § Web Audio Demos – http://www.google.com/doodles/robert-moogs-78th-birthday – http://webaudiodemos.appspot.com/midi-synth/index.html – http://aikelab.net/websynth/ – http://nicroto.github.io/viktor/ § Example Sounds – SuperSaw – Leads – Pad – MoogBass – 8-Bit sounds: https://www.youtube.com/watch?v=tf0-Rrm9dI0 – TR-808: https://www.youtube.com/watch?v=YeZZk2czG1c 18

  19. Modulation Synthesis § Modulation is originally from communication theory – Carrier: channel signal, e.g., radio or TV channel – Modulator: information signal, e.g., voice, video § Decreasing the frequency of carrier to hearing range can be used to synthesize sound § Types of modulation synthesis – Amplitude modulation (or ring modulation) – Frequency modulation § Modulation is non-linear processing – Generate new sinusoidal components 19

  20. Ring Modulation / Amplitude Modulation § Change the amplitude of one source with another source – Slow change: tremolo – Fast change: generate a new tone OSC OSC Modulator Modulator OSC OSC x + x Carrier Carrier (1 + a m ( t )) A c cos(2 π f c t ) a m ( t ) A c cos(2 π f c t ) Ring Modulation Amplitude Modulation 20

  21. Ring Modulation / Amplitude Modulation § Frequency domain – Expressed in terms of its sideband frequencies – The sum and difference of the two frequencies are obtained according to trigonometric identity – If the modulator is a non-sinusoidal tone, a mirrored-spectrum with regard to the carrier frequency is obtained carrier sideband sideband a m ( t ) = A m sin(2 π f m t )) f c -f m f c f c +f m 21

  22. Examples § Tone generation – SawtoothOsc x SineOsc – https://www.youtube.com/watch?v=yw7_WQmrzuk § Ring modulation is often used as an audio effect – http://webaudio.prototyping.bbc.co.uk/ring-modulator/ 22

  23. Frequency Modulation § Change the frequency of one source with another source – Slow change: vibrato – Fast change: generate a new (and rich) tone – Invented by John Chowning in 1973 à Yamaha DX7 OSC Modulator A c cos(2 π f c t + β sin(2 π f m t )) frequency OSC β = A m Carrier Index of modulation f m 23

  24. Frequency Modulation § Frequency Domain – Expressed in terms of its sideband frequencies – Their amplitudes are determined by the Bessel function – The sidebands below 0 Hz or above the Nyquist frequency are folded k = −∞ ∑ y ( t ) = A c J k ( β )cos(2 π ( f c + kf m ) t ) k = −∞ carrier sideband1 sideband1 sideband2 sideband2 sideband3 sideband3 f c -3f m f c -f m f c f c +f m f c -2f m f c +2f m f c +3f m 24

  25. Bessel Function ( − 1) n ( β 2 ) k + 2 n ∞ ∑ J k ( β ) = n !( n + k )! n = 0 1 Carrier Sideband 1 Sideband 2 Sideband 3 Sideband 4 0.5 J_(k) 0 − 0.5 0 50 100 150 200 250 300 350 beta 25

  26. Bessel Function 26

  27. The Effect of Modulation Index 1 1 Amplitude Amplitude 0 0 − 1 − 1 0 500 1000 1500 2000 0 500 1000 1500 2000 Time (Sample) Time (Sample) 20 20 Magnitude (dB) Magnitude (dB) Beta = 0 Beta = 1 0 0 − 20 − 20 − 40 − 40 − 60 − 60 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 Frequency (kHz) Frequency (kHz) 1 1 Amplitude Amplitude 0 0 − 1 − 1 0 500 1000 1500 2000 0 500 1000 1500 2000 Time (Sample) Time (Sample) 20 20 Magnitude (dB) Magnitude (dB) Beta = 10 Beta = 20 0 0 − 20 − 20 − 40 − 40 − 60 − 60 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 Frequency (kHz) Frequency (kHz) f c = 500, f m = 50 27

  28. Yamaha DX7 (1983) 28

  29. “Algorithms” in DX7 http://www.audiocentralmagazine.com/yamaha-dx-7-riparliamo-di-fm-e-non-solo-seconda-parte/yamaha-dx7-algorithms/ 29

  30. Examples § Web Audio Demo – http://www.taktech.org/takm/WebFMSynth/ § Sound Examples – Bell – Wood – Brass – Electric Piano – Vibraphone 30

  31. Non-linear Synthesis (wave-shaping) § Generate a rich sound spectrum from a sinusoid using non-linear transfer functions (also called “distortion synthesis”) § Examples of transfer function: y = f(x) – y = 1.5x’ – 0.5x’ 3 x’=gx: g correspond to the “gain knob” of the distortion – y = x’/(1+|x’|) – y = sin(x’) T 0 (x)=1, T 1 (x)=x, – Chebyshev polynomial: T k+1 (x) = 2xT k (x)-T k-1 (x) T 2 (x)=2x 2 -1, T 2 (x)=4x 3 -3x 1 1 Amplitude Amplitude 1 0 0 0.5 − 1 0 50 100 150 200 − 1 Amplitude 0 50 100 150 200 Time (Sample) Time (Sample) 0 20 Magnitude (dB) 20 Magnitude (dB) 0 0 − 0.5 − 20 − 20 − 40 − 1 − 40 − 60 − 1 − 0.5 0 0.5 1 5 10 15 20 Time (Sample) − 60 Frequency (kHz) 5 10 15 20 Frequency (kHz) 31

  32. Physical Modeling § Modeling Newton’s laws of motion (i.e. 𝐺 = 𝑛𝑏 ) on musical instruments – Every instrument have a different model § The ideal string ' ( ) ' ( ) – Wave equation: 𝐺 = 𝑛𝑏 à 𝐿 ( 𝐿 : tension, 𝜁 : linear mass density) '* ( = 𝜁 '* ( * * – General solution: 𝑧 𝑢, 𝑦 = 𝑧 0 (𝑢 − 3 ) + 𝑧 5 (𝑢 + 3 ) à Left-going traveling wave and right-going traveling wave 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend