cryptanalysis of a variant of the mceliece encryption
play

Cryptanalysis of a variant of the McEliece encryption scheme Julien - PowerPoint PPT Presentation

Cryptanalysis of a variant of the McEliece encryption scheme Julien Lavauzelle IRMAR, Universit de Rennes 1 Journes Nationales de Calcul Formel 2020 03/03/2020 Outline 1. McEliece cryptosystem and variants 2. Attack on the ReedSolomon


  1. Cryptanalysis of a variant of the McEliece encryption scheme Julien Lavauzelle IRMAR, Université de Rennes 1 Journées Nationales de Calcul Formel 2020 03/03/2020

  2. Outline 1. McEliece cryptosystem and variants 2. Attack on the Reed–Solomon variant 3. Attack on the twisted Reed–Solomon variant 0/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  3. McEliece cryptosystem McEliece cryptosystem (1978): a public-key encryption scheme. 1/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  4. McEliece cryptosystem McEliece cryptosystem (1978): a public-key encryption scheme. Summary: ◮ private key: an efficient decoding algorithm for a code C , ◮ public key: a random description of the code (masks the decoding algorithm), ◮ encryption: encode the message and add an error, ◮ decryption: decode the error and retrieve the message. 1/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  5. McEliece cryptosystem McEliece cryptosystem (1978): a public-key encryption scheme. Summary: ◮ private key: an efficient decoding algorithm for a code C , ◮ public key: a random description of the code (masks the decoding algorithm), ◮ encryption: encode the message and add an error, ◮ decryption: decode the error and retrieve the message. Security relies on two problems: 1. hardness of decoding random codes 2. hardness of recognizing the structure of a code ( ≃ find an efficient decoding algorithm from a random description of a code) 1/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  6. General statement of the problem Let F be a k -dimensional subspace of F q [ x ] / ( x q − x ) . Input.   y 1 f 1 ( x 1 ) . . . . . . y n f 1 ( x n ) . .  ∈ F k × n G =   . .  . . q y 1 f k ( x 1 ) . . . . . . y n f k ( x n )  f 1 ( x ) , . . . , f k ( x ) is a basis of F ,  where: ( x 1 , . . . , x n ) are pairwise distinct in F q ,  ( y 1 , . . . , y n ) are non-zero elements of F q . 2/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  7. General statement of the problem Let F be a k -dimensional subspace of F q [ x ] / ( x q − x ) . Input.   y 1 f 1 ( x 1 ) . . . . . . y n f 1 ( x n ) . .  ∈ F k × n G =   . .  . . q y 1 f k ( x 1 ) . . . . . . y n f k ( x n )  f 1 ( x ) , . . . , f k ( x ) is a basis of F ,  where: ( x 1 , . . . , x n ) are pairwise distinct in F q ,  ( y 1 , . . . , y n ) are non-zero elements of F q . Output. A basis g 1 ( x ) , . . . , g k ( x ) of F , pairwise distinct elements x ′ 1 , . . . , x ′ n ∈ n ∈ F × F q and non-zero elements y ′ 1 , . . . , y ′ q such that  y ′ 1 g 1 ( x ′ y ′ n g 1 ( x ′  1 ) . . . . . . n ) . .   G = . .  .  . . y ′ 1 g k ( x ′ y ′ n g k ( x ′ 1 ) n ) . . . . . . 2/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  8. Instances of the problem A Public-Key Cryptosystem Based on Algebraic Coding Theory . McEliece. Jet Propulsion Laboratory DSN Progress Report. 1978 . Original McEliece cryptosystem: binary Goppa codes, q = 2 m . – x = ( x 1 , . . . , x n ) ∈ F n q pairwise distinct, – π ( x ) the derivative of ∏ n i = 1 ( x − x i ) ∈ F q [ x ] , – an irreducible Γ ( x ) ∈ F q [ x ] , � Γ ( x 1 ) � π ( x 1 ) , . . . , Γ ( x 1 ) ∈ ( F × q ) n . – y = π ( x 1 ) � � F x , Γ , r = f ( x ) ∈ F q [ x ] | deg ( f ) < r and y i f ( x i ) ∈ F 2 , ∀ i = 1, . . . , n . 3/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  9. Instances of the problem A Public-Key Cryptosystem Based on Algebraic Coding Theory . McEliece. Jet Propulsion Laboratory DSN Progress Report. 1978 . Original McEliece cryptosystem: binary Goppa codes, q = 2 m . – x = ( x 1 , . . . , x n ) ∈ F n q pairwise distinct, – π ( x ) the derivative of ∏ n i = 1 ( x − x i ) ∈ F q [ x ] , – an irreducible Γ ( x ) ∈ F q [ x ] , � Γ ( x 1 ) � π ( x 1 ) , . . . , Γ ( x 1 ) ∈ ( F × q ) n . – y = π ( x 1 ) � � F x , Γ , r = f ( x ) ∈ F q [ x ] | deg ( f ) < r and y i f ( x i ) ∈ F 2 , ∀ i = 1, . . . , n . ◮ Still considered as secure (NIST competition). ◮ Main drawback : large key sizes. 3/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  10. Intances of the problem In order to reduce key sizes : ◮ Niederreiter (1986): generalized Reed–Solomon codes – x = ( x 1 , . . . , x n ) ∈ F n q pairwise distinct – y = ( y 1 , . . . , y n ) ∈ ( F × q ) n � � F = f ( x ) ∈ F q [ x ] | deg ( f ) < k 4/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  11. Intances of the problem In order to reduce key sizes : ◮ Niederreiter (1986): generalized Reed–Solomon codes – x = ( x 1 , . . . , x n ) ∈ F n q pairwise distinct – y = ( y 1 , . . . , y n ) ∈ ( F × q ) n � � F = f ( x ) ∈ F q [ x ] | deg ( f ) < k However, broken by Sidelnikov and Shestakov in 1992 (Part II). On Insecurity of Cryptosystems Based on Generalized Reed-Solomon Codes . Sidelnikov, Shestakov. Discrete Math. Appl.. 1992 . 4/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  12. Intances of the problem In order to reduce key sizes : ◮ Niederreiter (1986): generalized Reed–Solomon codes – x = ( x 1 , . . . , x n ) ∈ F n q pairwise distinct – y = ( y 1 , . . . , y n ) ∈ ( F × q ) n � � F = f ( x ) ∈ F q [ x ] | deg ( f ) < k However, broken by Sidelnikov and Shestakov in 1992 (Part II). ◮ A lot of propositions to replace Goppa codes → Reed–Muller codes, AG codes, QC-MDPC codes, etc. On Insecurity of Cryptosystems Based on Generalized Reed-Solomon Codes . Sidelnikov, Shestakov. Discrete Math. Appl.. 1992 . 4/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  13. Intances of the problem In order to reduce key sizes : ◮ Niederreiter (1986): generalized Reed–Solomon codes – x = ( x 1 , . . . , x n ) ∈ F n q pairwise distinct – y = ( y 1 , . . . , y n ) ∈ ( F × q ) n � � F = f ( x ) ∈ F q [ x ] | deg ( f ) < k However, broken by Sidelnikov and Shestakov in 1992 (Part II). ◮ A lot of propositions to replace Goppa codes → Reed–Muller codes, AG codes, QC-MDPC codes, etc. ◮ In 2018: Beelen, Bossert, Puchinger and Rosenkilde proposed twisted Reed–Solomon codes . → claimed key size reduction by a factor 7 → also broken (Part III) On Insecurity of Cryptosystems Based on Generalized Reed-Solomon Codes . Sidelnikov, Shestakov. Discrete Math. Appl.. 1992 . Cryptanalysis of a System Based on Twisted Reed–Solomon Codes . L. , Renner. Designs, Codes and Cryptograhy. 2020 . 4/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  14. Outline 1. McEliece cryptosystem and variants 2. Attack on the Reed–Solomon variant 3. Attack on the twisted Reed–Solomon variant 4/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  15. The problem � � Let F = f ( x ) ∈ F q [ x ] | deg ( f ) < k . Input. A matrix   y 1 f 1 ( x 1 ) . . . . . . y n f 1 ( x n ) . .  ∈ F k × n G =   . . , where  . . q y 1 f k ( x 1 ) . . . . . . y n f k ( x n ) – f 1 ( x ) , . . . , f k ( x ) is a basis of F , q are pairwise distinct, and ( y 1 , . . . , y n ) ∈ ( F × – ( x 1 , . . . , x n ) ∈ F n q ) n . Output. A basis g 1 ( x ) , . . . , g k ( x ) of F , pairwise distinct elements n ) ∈ ( F × q ) n such that ( x ′ 1 , . . . , x ′ n ) ∈ F n q and non-zero elements ( y ′ 1 , . . . , y ′  y ′ 1 g 1 ( x ′ y ′ n g 1 ( x ′  1 ) . . . . . . n ) . .   G = . .  .  . . y ′ 1 g k ( x ′ y ′ n g k ( x ′ 1 ) n ) . . . . . . 5/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  16. The problem Remark. One can write G as:   1 1 . . . . . . 1 1 x 1 x 2 . . . . . . x n − 1 x n     x 2 x 2 x 2 x 2 . . . . . .   S · · Diag ( y 1 , . . . , y n ) n − 1 n 1 2   . .   . . . .   x k − 1 x k − 1 x k − 1 x k − 1 . . . . . . n 1 2 n − 1 where S ∈ F k × k is invertible. q 6/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  17. Structural properties Notation. – 1 = ( 1, . . . , 1 ) ∈ F n q � � F = f ( x ) ∈ F q [ x ] | deg ( f ) < k – a ⋆ b = ( a 1 b 1 , . . . , a n b n ) – λ a = ( λ a 1 , . . . , λ a n ) 7/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

  18. Structural properties Notation. – 1 = ( 1, . . . , 1 ) ∈ F n q � � F = f ( x ) ∈ F q [ x ] | deg ( f ) < k – a ⋆ b = ( a 1 b 1 , . . . , a n b n ) – λ a = ( λ a 1 , . . . , λ a n ) Definition. Generalized Reed–Solomon code: � ⊆ F n � GRS k ( x , y ) : = y ⋆ ev x ( f ) : = ( y 1 f ( x 1 ) , . . . , y n f ( x n )) | f ( x ) ∈ F q 7/20 J. Lavauzelle – Cryptanalysis of a variant of the McEliece encryption scheme – JNCF 2020

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend