craig interpolation in displayable logics
play

Craig interpolation in displayable logics James Brotherston 1 and - PowerPoint PPT Presentation

Craig interpolation in displayable logics James Brotherston 1 and Rajeev Gor e 2 1 Imperial College London 2 ANU Canberra TABLEAUX, Universit at Bern, 7 Jul 2011 1/ 14 Craig interpolation Definition A (propositional) logic satisfies Craig


  1. Craig interpolation in displayable logics James Brotherston 1 and Rajeev Gor´ e 2 1 Imperial College London 2 ANU Canberra TABLEAUX, Universit¨ at Bern, 7 Jul 2011 1/ 14

  2. Craig interpolation Definition A (propositional) logic satisfies Craig interpolation iff for any provable F ⊢ G there exists an interpolant I s.t.: F ⊢ I provable and I ⊢ G provable and V ( I ) ⊆ V ( F ) ∩ V ( G ) ( V ( X ) is the set of propositional variables occurring in X ) 2/ 14

  3. Craig interpolation Definition A (propositional) logic satisfies Craig interpolation iff for any provable F ⊢ G there exists an interpolant I s.t.: F ⊢ I provable and I ⊢ G provable and V ( I ) ⊆ V ( F ) ∩ V ( G ) ( V ( X ) is the set of propositional variables occurring in X ) Applications in: ◮ logic: consistency; compactness; definability 2/ 14

  4. Craig interpolation Definition A (propositional) logic satisfies Craig interpolation iff for any provable F ⊢ G there exists an interpolant I s.t.: F ⊢ I provable and I ⊢ G provable and V ( I ) ⊆ V ( F ) ∩ V ( G ) ( V ( X ) is the set of propositional variables occurring in X ) Applications in: ◮ logic: consistency; compactness; definability ◮ computer science: invariant generation; type inference; model checking; ontology decomposition 2/ 14

  5. Display calculi ◮ are consecution calculi ` a la Gentzen; 3/ 14

  6. Display calculi ◮ are consecution calculi ` a la Gentzen; ◮ Characterisation: any part of a consecution can be “displayed” alone on one side of the ⊢ ; 3/ 14

  7. Display calculi ◮ are consecution calculi ` a la Gentzen; ◮ Characterisation: any part of a consecution can be “displayed” alone on one side of the ⊢ ; ◮ Needs a richer consecution structure than simple sequents; 3/ 14

  8. Display calculi ◮ are consecution calculi ` a la Gentzen; ◮ Characterisation: any part of a consecution can be “displayed” alone on one side of the ⊢ ; ◮ Needs a richer consecution structure than simple sequents; ◮ Cut-elimination is guaranteed when the proof rules satisfy some simple conditions; 3/ 14

  9. Display calculi ◮ are consecution calculi ` a la Gentzen; ◮ Characterisation: any part of a consecution can be “displayed” alone on one side of the ⊢ ; ◮ Needs a richer consecution structure than simple sequents; ◮ Cut-elimination is guaranteed when the proof rules satisfy some simple conditions; ◮ But decidability, interpolation etc. don’t follow directly as they often do in sequent calculi. 3/ 14

  10. Display calculi ◮ are consecution calculi ` a la Gentzen; ◮ Characterisation: any part of a consecution can be “displayed” alone on one side of the ⊢ ; ◮ Needs a richer consecution structure than simple sequents; ◮ Cut-elimination is guaranteed when the proof rules satisfy some simple conditions; ◮ But decidability, interpolation etc. don’t follow directly as they often do in sequent calculi. ◮ We show interpolation for a large class of display calculi. 3/ 14

  11. Display calculus syntax ◮ Formulas given by: F ::= P | ⊤ | ⊥ | ¬ F | F & F | F ∨ F | F → F | . . . 4/ 14

  12. Display calculus syntax ◮ Formulas given by: F ::= P | ⊤ | ⊥ | ¬ F | F & F | F ∨ F | F → F | . . . ◮ Structures given by: X ::= F | ∅ | ♯X | X ; X 4/ 14

  13. Display calculus syntax ◮ Formulas given by: F ::= P | ⊤ | ⊥ | ¬ F | F & F | F ∨ F | F → F | . . . ◮ Structures given by: X ::= F | ∅ | ♯X | X ; X ◮ Consecutions are given by X ⊢ Y for X, Y structures. 4/ 14

  14. Display calculus syntax ◮ Formulas given by: F ::= P | ⊤ | ⊥ | ¬ F | F & F | F ∨ F | F → F | . . . ◮ Structures given by: X ::= F | ∅ | ♯X | X ; X ◮ Consecutions are given by X ⊢ Y for X, Y structures. ◮ Substructures of X ⊢ Y are antecedent or consequent parts (similar to positive / negative occurrences in formulas). 4/ 14

  15. Display-equivalence We have the following display postulates: X ; Y ⊢ Z X ⊢ ♯Y ; Z Y ; X ⊢ Z <> D <> D X ⊢ Y ; Z <> D X ; ♯Y ⊢ Z <> D X ⊢ Z ; Y X ⊢ Y ♯Y ⊢ ♯X ♯♯X ⊢ Y <> D <> D 5/ 14

  16. Display-equivalence We have the following display postulates: X ; Y ⊢ Z X ⊢ ♯Y ; Z Y ; X ⊢ Z <> D <> D X ⊢ Y ; Z <> D X ; ♯Y ⊢ Z <> D X ⊢ Z ; Y X ⊢ Y ♯Y ⊢ ♯X ♯♯X ⊢ Y <> D <> D Display-equivalence ≡ D given by transitive closure of <> D . 5/ 14

  17. Display-equivalence We have the following display postulates: X ; Y ⊢ Z X ⊢ ♯Y ; Z Y ; X ⊢ Z <> D <> D X ⊢ Y ; Z <> D X ; ♯Y ⊢ Z <> D X ⊢ Z ; Y X ⊢ Y ♯Y ⊢ ♯X ♯♯X ⊢ Y <> D <> D Display-equivalence ≡ D given by transitive closure of <> D . Proposition (Display property) For any antecedent part Z of X ⊢ Y there is a W s.t. X ⊢ Y ≡ D Z ⊢ W (and similarly for consequent parts). 5/ 14

  18. Some proof rules Identity rules: X ′ ⊢ Y ′ ( X ⊢ Y ≡ D X ′ ⊢ Y ′ ) ( ≡ D ) (Id) P ⊢ P X ⊢ Y 6/ 14

  19. Some proof rules Identity rules: X ′ ⊢ Y ′ ( X ⊢ Y ≡ D X ′ ⊢ Y ′ ) ( ≡ D ) (Id) P ⊢ P X ⊢ Y Logical rules: X ⊢ F Y ⊢ G F ; G ⊢ X (&R) . . . (&L) X ; Y ⊢ F & G F & G ⊢ X 6/ 14

  20. Some proof rules Identity rules: X ′ ⊢ Y ′ ( X ⊢ Y ≡ D X ′ ⊢ Y ′ ) ( ≡ D ) (Id) P ⊢ P X ⊢ Y Logical rules: X ⊢ F Y ⊢ G F ; G ⊢ X (&R) . . . (&L) X ; Y ⊢ F & G F & G ⊢ X Structural rules: W ; ( X ; Y ) ⊢ Z ∅ ; X ⊢ Y ( α ) ( ∅ C L ) ( W ; X ) ; Y ⊢ Z X ⊢ Y X ⊢ Z X ; X ⊢ Y (W) . . . (C) X ; Y ⊢ Z X ⊢ Y 6/ 14

  21. Interpolation: our approach ◮ Proof-theoretic strategy: given a cut-free proof of X ⊢ Y , we construct its interpolant I . 7/ 14

  22. Interpolation: our approach ◮ Proof-theoretic strategy: given a cut-free proof of X ⊢ Y , we construct its interpolant I . ◮ Induction on proofs: from interpolants for the premises of a rule, construct an interpolant for its conclusion. 7/ 14

  23. Interpolation: our approach ◮ Proof-theoretic strategy: given a cut-free proof of X ⊢ Y , we construct its interpolant I . ◮ Induction on proofs: from interpolants for the premises of a rule, construct an interpolant for its conclusion. ◮ But not enough info to do this for display steps, e.g.: X ; Y ⊢ Z ( ≡ D ) X ⊢ ♯Y ; Z 7/ 14

  24. Local AD-interpolation (LADI) property Let ≡ AD be the least equivalence closed under ≡ D and applications of associativity ( α ) (if present). 8/ 14

  25. Local AD-interpolation (LADI) property Let ≡ AD be the least equivalence closed under ≡ D and applications of associativity ( α ) (if present). Definition A proof rule with conclusion C has the LADI property if, given that for each premise of the rule C i we have interpolants for all i ≡ AD C i , we can construct interpolants for all C ′ ≡ AD C . C ′ 8/ 14

  26. Local AD-interpolation (LADI) property Let ≡ AD be the least equivalence closed under ≡ D and applications of associativity ( α ) (if present). Definition A proof rule with conclusion C has the LADI property if, given that for each premise of the rule C i we have interpolants for all i ≡ AD C i , we can construct interpolants for all C ′ ≡ AD C . C ′ Proposition If the proof rules of a display calculus D all have the LADI property then D enjoys Craig interpolation. 8/ 14

  27. LADI: (&R) X ⊢ F Y ⊢ G (&R) X ; Y ⊢ F & G 9/ 14

  28. LADI: (&R) X ⊢ F Y ⊢ G (&R) X ; Y ⊢ F & G Need interpolant for arbitrary W ⊢ Z ≡ AD X ; Y ⊢ F & G . 9/ 14

  29. LADI: (&R) X ⊢ F Y ⊢ G (&R) X ; Y ⊢ F & G Need interpolant for arbitrary W ⊢ Z ≡ AD X ; Y ⊢ F & G . Case: F & G occurs in Z . 9/ 14

  30. LADI: (&R) X ⊢ F Y ⊢ G (&R) X ; Y ⊢ F & G Need interpolant for arbitrary W ⊢ Z ≡ AD X ; Y ⊢ F & G . Case: F & G occurs in Z . Subcase: W built entirely from parts of X ( W ⊳ X ). 9/ 14

  31. LADI: (&R) X ⊢ F Y ⊢ G (&R) X ; Y ⊢ F & G Need interpolant for arbitrary W ⊢ Z ≡ AD X ; Y ⊢ F & G . Case: F & G occurs in Z . Subcase: W built entirely from parts of X ( W ⊳ X ). By a LEMMA ∃ U. X ⊢ F ≡ AD W ⊢ U . 9/ 14

  32. LADI: (&R) X ⊢ F Y ⊢ G (&R) X ; Y ⊢ F & G Need interpolant for arbitrary W ⊢ Z ≡ AD X ; Y ⊢ F & G . Case: F & G occurs in Z . Subcase: W built entirely from parts of X ( W ⊳ X ). By a LEMMA ∃ U. X ⊢ F ≡ AD W ⊢ U . Claim: interpolant I for W ⊢ U is an interpolant for W ⊢ Z . 9/ 14

  33. LADI: (&R) X ⊢ F Y ⊢ G (&R) X ; Y ⊢ F & G Need interpolant for arbitrary W ⊢ Z ≡ AD X ; Y ⊢ F & G . Case: F & G occurs in Z . Subcase: W built entirely from parts of X ( W ⊳ X ). By a LEMMA ∃ U. X ⊢ F ≡ AD W ⊢ U . Claim: interpolant I for W ⊢ U is an interpolant for W ⊢ Z . Main issue: show I ⊢ Z provable given I ⊢ U provable. 9/ 14

  34. LADI: (&R) By display property we have I ⊢ U ≡ D V ⊢ F . 10/ 14

  35. LADI: (&R) By display property we have I ⊢ U ≡ D V ⊢ F . Next, we have: W ⊢ Z ≡ AD X ⊢ ♯Y ; F & G 10/ 14

  36. LADI: (&R) By display property we have I ⊢ U ≡ D V ⊢ F . Next, we have: W ⊢ Z ≡ AD X ⊢ ♯Y ; F & G X ⊢ F [( ♯Y ; F & G ) /F ] = 10/ 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend