counting lattice walks by winding angle
play

Counting lattice walks by winding angle Sminaire de combinatoire - PowerPoint PPT Presentation

Counting lattice walks by winding angle Sminaire de combinatoire Philippe Flajolet Andrew Elvey Price CNRS, Universit de Tours October 2020 Counting lattice walks by winding angle Andrew Elvey Price L ATTICE WALKS BY WINDING ANGLE The


  1. K REWERAS WALKS BY WINDING NUMBER The model: Count walks starting at by end point. × e iα ( s − 1 ) × e − iα ( s ) This example contributes t 5 xy 3 . � t | p | x x ( p ) y y ( p ) e i α n ( p ) Definition: Q ( t , α, x , y ) ≡ Q ( x , y ) = paths p Note: Q ( 0 , 0 ) = E ( t , e i α ) Counting lattice walks by winding angle Andrew Elvey Price

  2. K REWERAS WALKS BY WINDING NUMBER The model: Count walks starting at by end point. × e iα ( s − 1 ) × e − iα ( s ) This example contributes t 6 xy 2 . � t | p | x x ( p ) y y ( p ) e i α n ( p ) Definition: Q ( t , α, x , y ) ≡ Q ( x , y ) = paths p Note: Q ( 0 , 0 ) = E ( t , e i α ) Counting lattice walks by winding angle Andrew Elvey Price

  3. K REWERAS WALKS BY WINDING NUMBER The model: Count walks starting at by end point. × e iα ( s − 1 ) × e − iα ( s ) This example contributes t 7 xy . � t | p | x x ( p ) y y ( p ) e i α n ( p ) Definition: Q ( t , α, x , y ) ≡ Q ( x , y ) = paths p Note: Q ( 0 , 0 ) = E ( t , e i α ) Counting lattice walks by winding angle Andrew Elvey Price

  4. K REWERAS WALKS BY WINDING NUMBER The model: Count walks starting at by end point. × e iα ( s − 1 ) × e − iα ( s ) This example contributes t 8 x . � t | p | x x ( p ) y y ( p ) e i α n ( p ) Definition: Q ( t , α, x , y ) ≡ Q ( x , y ) = paths p Note: Q ( 0 , 0 ) = E ( t , e i α ) Counting lattice walks by winding angle Andrew Elvey Price

  5. K REWERAS WALKS BY WINDING NUMBER The model: Count walks starting at by end point. × e iα ( s − 1 ) × e − iα ( s ) This example contributes t 9 y 2 e − i α . � t | p | x x ( p ) y y ( p ) e i α n ( p ) Definition: Q ( t , α, x , y ) ≡ Q ( x , y ) = paths p Note: Q ( 0 , 0 ) = E ( t , e i α ) Counting lattice walks by winding angle Andrew Elvey Price

  6. K REWERAS WALKS BY WINDING NUMBER The model: Count walks starting at by end point. × e iα ( s − 1 ) × e − iα ( s ) This example contributes t 10 xy 3 e − i α . � t | p | x x ( p ) y y ( p ) e i α n ( p ) Definition: Q ( t , α, x , y ) ≡ Q ( x , y ) = paths p Note: Q ( 0 , 0 ) = E ( t , e i α ) Counting lattice walks by winding angle Andrew Elvey Price

  7. F UNCTIONAL EQUATION Recursion → functional equation: separate by type of final step. Q ( x, y ) = 1 + xytQ ( x, y ) + e iα tQ (0 , x ) + (Final step goes through left wall) t x ( Q ( x, y ) − Q (0 , y )) + e − iα tyQ ( y, 0) + (Final step goes through bottom wall) t y ( Q ( x, y ) − Q ( x, 0)) Counting lattice walks by winding angle Andrew Elvey Price

  8. K REWERAS WALKS BY WINDING NUMBER The model: Count walks starting at the red point by end point. × e iα ( s − 1 ) × e − iα ( s ) � t | p | x x ( p ) y y ( p ) e i α n ( p ) . Definition: Q ( t , α, x , y ) ≡ Q ( x , y ) = paths p Characterised by: Q ( x , y ) = 1 + txyQ ( x , y ) + tQ ( x , y ) − Q ( 0 , y ) + tQ ( x , y ) − Q ( x , 0 ) x y + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Counting lattice walks by winding angle Andrew Elvey Price

  9. Part 2: Solution (using theta functions) Counting lattice walks by winding angle Andrew Elvey Price

  10. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: Q ( x , y ) = 1 + txyQ ( x , y ) + tQ ( x , y ) − Q ( 0 , y ) + tQ ( x , y ) − Q ( x , 0 ) x y + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Counting lattice walks by winding angle Andrew Elvey Price

  11. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: Q ( x , y ) = 1 + txyQ ( x , y ) + tQ ( x , y ) − Q ( 0 , y ) + tQ ( x , y ) − Q ( x , 0 ) x y + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Solution: Step 1: Fix t ∈ [ 0 , 1 / 3 ) , α ∈ R . All series converge for | x | , | y | < 1. Counting lattice walks by winding angle Andrew Elvey Price

  12. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: Q ( x , y ) = 1 + txyQ ( x , y ) + tQ ( x , y ) − Q ( 0 , y ) + tQ ( x , y ) − Q ( x , 0 ) x y + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Solution: Step 1: Fix t ∈ [ 0 , 1 / 3 ) , α ∈ R . All series converge for | x | , | y | < 1. Step 2: Write equation as K ( x , y ) Q ( x , y ) = R ( x , y ) , where K ( x , y ) = 1 − txy − t / y − t / x R ( x , y ) = 1 − t xQ ( 0 , y ) − t yQ ( x , 0 ) + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Counting lattice walks by winding angle Andrew Elvey Price

  13. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: Q ( x , y ) = 1 + txyQ ( x , y ) + tQ ( x , y ) − Q ( 0 , y ) + tQ ( x , y ) − Q ( x , 0 ) x y + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Solution: Step 1: Fix t ∈ [ 0 , 1 / 3 ) , α ∈ R . All series converge for | x | , | y | < 1. Step 2: Write equation as K ( x , y ) Q ( x , y ) = R ( x , y ) , where K ( x , y ) = 1 − txy − t / y − t / x R ( x , y ) = 1 − t xQ ( 0 , y ) − t yQ ( x , 0 ) + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Step 3: Consider the curve K ( x , y ) = 0 (Then R ( x , y ) = 0). Counting lattice walks by winding angle Andrew Elvey Price

  14. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: Q ( x , y ) = 1 + txyQ ( x , y ) + tQ ( x , y ) − Q ( 0 , y ) + tQ ( x , y ) − Q ( x , 0 ) x y + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Solution: Step 1: Fix t ∈ [ 0 , 1 / 3 ) , α ∈ R . All series converge for | x | , | y | < 1. Step 2: Write equation as K ( x , y ) Q ( x , y ) = R ( x , y ) , where K ( x , y ) = 1 − txy − t / y − t / x R ( x , y ) = 1 − t xQ ( 0 , y ) − t yQ ( x , 0 ) + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Step 3: Consider the curve K ( x , y ) = 0 (Then R ( x , y ) = 0). Parameterisation involves the Jacobi theta function ϑ ( z , τ ) . So far: Similar to elliptic approaches to quadrant models [Bernardi, Bousquet-Mélou, Fayolle, Iasnogorodski, Kurkova, Malyshev, Raschel, Trotignon] Counting lattice walks by winding angle Andrew Elvey Price

  15. J ACOBI THETA FUNCTION ϑ ( z , τ ) Definition: For τ, z ∈ C , im ( τ ) > 0, ∞ 2 i πτ +( 2 n + 1 ) iz ( − 1 ) n e ( 2 n + 1 2 ) � ϑ ( z , τ ) = n = −∞ Useful facts (for fixed τ ): ϑ ( z + π, τ ) = − ϑ ( z , τ ) ϑ ( z + πτ, τ ) = − e − 2 iz − i πτ ϑ ( z , τ ) Counting lattice walks by winding angle Andrew Elvey Price

  16. P ARAMETERISATION OF K ( x , y ) = 0 USING ϑ ( z , τ ) Definition: For τ, z ∈ C , im ( τ ) > 0, ∞ 2 i πτ +( 2 n + 1 ) iz ( − 1 ) n e ( 2 n + 1 2 ) � ϑ ( z , τ ) = n = −∞ Useful facts (for fixed τ ): ϑ ( z + π, τ ) = − ϑ ( z , τ ) ϑ ( z + πτ, τ ) = − e − 2 iz − i πτ ϑ ( z , τ ) Parameterisation: The curve K ( x , y ) := 1 − txy − t / y − t / x = 0 is parameterised by X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) and Y ( z ) = X ( z + πτ ) , ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) ϑ ′ ( 0 , 3 τ ) where τ is determined by t = e − πτ i 4 i ϑ ( πτ, 3 τ ) + 6 ϑ ′ ( πτ, 3 τ ) . 3 Counting lattice walks by winding angle Andrew Elvey Price

  17. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: K ( x , y ) Q ( x , y ) = R ( x , y ) , where K ( x , y ) = 1 − txy − t / y − t / x , R ( x , y ) = 1 − t xQ ( 0 , y ) − t yQ ( x , 0 ) + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Counting lattice walks by winding angle Andrew Elvey Price

  18. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: K ( x , y ) Q ( x , y ) = R ( x , y ) , where K ( x , y ) = 1 − txy − t / y − t / x , R ( x , y ) = 1 − t xQ ( 0 , y ) − t yQ ( x , 0 ) + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Define X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . Then K ( X ( z ) , X ( z + πτ )) = 0. Counting lattice walks by winding angle Andrew Elvey Price

  19. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: K ( x , y ) Q ( x , y ) = R ( x , y ) , where K ( x , y ) = 1 − txy − t / y − t / x , R ( x , y ) = 1 − t xQ ( 0 , y ) − t yQ ( x , 0 ) + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Define X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . Then K ( X ( z ) , X ( z + πτ )) = 0. Hence R ( X ( z ) , X ( z + πτ )) = 0 (assuming | X ( z ) | ≤ 1 and | X ( z + πτ ) | ≤ 1). Counting lattice walks by winding angle Andrew Elvey Price

  20. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: K ( x , y ) Q ( x , y ) = R ( x , y ) , where K ( x , y ) = 1 − txy − t / y − t / x , R ( x , y ) = 1 − t xQ ( 0 , y ) − t yQ ( x , 0 ) + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Define X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . Then K ( X ( z ) , X ( z + πτ )) = 0. Hence R ( X ( z ) , X ( z + πτ )) = 0 (assuming | X ( z ) | ≤ 1 and | X ( z + πτ ) | ≤ 1). New equation to solve: R ( X ( z ) , X ( z + πτ )) = 0 , Counting lattice walks by winding angle Andrew Elvey Price

  21. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: K ( x , y ) Q ( x , y ) = R ( x , y ) , where K ( x , y ) = 1 − txy − t / y − t / x , R ( x , y ) = 1 − t xQ ( 0 , y ) − t yQ ( x , 0 ) + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Define X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . Then K ( X ( z ) , X ( z + πτ )) = 0. Hence R ( X ( z ) , X ( z + πτ )) = 0 (assuming | X ( z ) | ≤ 1 and | X ( z + πτ ) | ≤ 1). New equation to solve: R ( X ( z ) , X ( z + πτ )) = 0 , Counting lattice walks by winding angle Andrew Elvey Price

  22. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER � � � � 1 � � 0 , 1 Plot of z : | X ( z ) | ∈ , 3 , 1 , ( 1 , 3 ) , ( 3 , 9 ) , ( 9 , ∞ ] . 3 2 πτ πτ Ω 0 π 3 π 2 π − π − πτ − 2 πτ For z ∈ Ω , | X ( z ) | < 1 ⇒ Q ( X ( z ) , 0 ) and Q ( 0 , X ( z )) are well defined. Counting lattice walks by winding angle Andrew Elvey Price

  23. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER � � � � 1 � � 0 , 1 Plot of z : | X ( z ) | ∈ , 3 , 1 , ( 1 , 3 ) , ( 3 , 9 ) , ( 9 , ∞ ] . 3 2 πτ πτ Ω 0 π 3 π 2 π − π − πτ − 2 πτ For z ∈ Ω , | X ( z ) | < 1 ⇒ Q ( X ( z ) , 0 ) and Q ( 0 , X ( z )) are well defined. Near Re ( z ) = 0, we have z ∈ Ω and z + πτ ∈ Ω . Counting lattice walks by winding angle Andrew Elvey Price

  24. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) R ( X ( z ) , X ( z + πτ )) = 0 where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . R ( x , y ) = 1 − t xQ ( 0 , y ) − t yQ ( x , 0 ) + e i α tQ ( 0 , x ) + e − i α tyQ ( y , 0 ) . Counting lattice walks by winding angle Andrew Elvey Price

  25. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) t t 1 = X ( z ) Q ( 0 , X ( z + πτ )) + X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) − e − i α tX ( z + πτ ) Q ( X ( z + πτ ) , 0 ) , where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . Counting lattice walks by winding angle Andrew Elvey Price

  26. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) t t 1 = X ( z ) Q ( 0 , X ( z + πτ )) + X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) − e − i α tX ( z + πτ ) Q ( X ( z + πτ ) , 0 ) , where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . For z near 0, define t X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) . L ( z ) = Both L ( z ) and L ( z + πτ ) converge. Counting lattice walks by winding angle Andrew Elvey Price

  27. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) t t 1 = X ( z ) Q ( 0 , X ( z + πτ ))+ X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) − e − i α tX ( z + πτ ) Q ( X ( z + πτ ) , 0 ) , where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . For z near 0, define t X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) . L ( z ) = Both L ( z ) and L ( z + πτ ) converge. Counting lattice walks by winding angle Andrew Elvey Price

  28. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) t 1 = X ( z ) Q ( 0 , X ( z + πτ )) + L ( z ) − e − i α tX ( z + πτ ) Q ( X ( z + πτ ) , 0 ) , where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . For z near 0, define t X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) . L ( z ) = Both L ( z ) and L ( z + πτ ) converge. Counting lattice walks by winding angle Andrew Elvey Price

  29. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) t 1 = X ( z ) Q ( 0 , X ( z + πτ )) + L ( z ) − e − i α tX ( z + πτ ) Q ( X ( z + πτ ) , 0 ) , where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . For z near 0, define t X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) . L ( z ) = Both L ( z ) and L ( z + πτ ) converge. Counting lattice walks by winding angle Andrew Elvey Price

  30. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) t 1 = X ( z ) Q ( 0 , X ( z + πτ )) + L ( z ) − e − i α tX ( z + πτ ) Q ( X ( z + πτ ) , 0 ) , where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . For z near 0, define t X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) . L ( z ) = Both L ( z ) and L ( z + πτ ) converge. Counting lattice walks by winding angle Andrew Elvey Price

  31. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) t 1 = X ( z ) Q ( 0 , X ( z + πτ )) + L ( z ) e − i α t − X ( z ) X ( z + 2 πτ ) Q ( X ( z + πτ ) , 0 ) , where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . For z near 0, define t X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) . L ( z ) = Both L ( z ) and L ( z + πτ ) converge. Counting lattice walks by winding angle Andrew Elvey Price

  32. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) t 1 = X ( z ) Q ( 0 , X ( z + πτ )) + L ( z ) e − i α t − X ( z ) X ( z + 2 πτ ) Q ( X ( z + πτ ) , 0 ) , where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . For z near 0, define t X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) . L ( z ) = Both L ( z ) and L ( z + πτ ) converge. Counting lattice walks by winding angle Andrew Elvey Price

  33. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) 1 = − e − i α X ( z ) L ( z + πτ ) + L ( z ) . where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . For z near 0, define t X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) . L ( z ) = Both L ( z ) and L ( z + πτ ) converge. Counting lattice walks by winding angle Andrew Elvey Price

  34. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) 1 = − e − i α X ( z ) L ( z + πτ ) + L ( z ) . where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . For z near 0, define t X ( z + πτ ) Q ( X ( z ) , 0 ) − e i α tQ ( 0 , X ( z )) . L ( z ) = Both L ( z ) and L ( z + πτ ) converge. Counting lattice walks by winding angle Andrew Elvey Price

  35. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) 1 = − e − i α X ( z ) L ( z + πτ ) + L ( z ) . where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . Counting lattice walks by winding angle Andrew Elvey Price

  36. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) 1 = − e − i α X ( z ) L ( z + πτ ) + L ( z ) . where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . We can solve this exactly: e 3 i α 1 + e − i α � � X ( z ) + e − 2 i α X ( z − πτ ) L ( z ) = − 1 − e 3 i α e i α + 5 i πτ ϑ ( z − 2 πτ, 3 τ ) ϑ ( z − α 2 + 2 πτ 3 ϑ ( πτ, 3 τ ) ϑ ′ ( 0 , τ ) 3 , τ ) − ( 1 − e 3 i α ) ϑ ( α 2 − 2 πτ 3 , τ ) ϑ ′ ( 0 , 3 τ ) ϑ ( z , τ ) ϑ ( z , 3 τ ) Counting lattice walks by winding angle Andrew Elvey Price

  37. S OLUTION TO K REWERAS WALKS BY WINDING NUMBER Equation to solve: (near Re ( z ) = 0) 1 = − e − i α X ( z ) L ( z + πτ ) + L ( z ) . where X ( z ) = e − 4 πτ i 3 ϑ ( z , 3 τ ) ϑ ( z − πτ, 3 τ ) ϑ ( z + πτ, 3 τ ) ϑ ( z − 2 πτ, 3 τ ) . We can solve this exactly: e 3 i α 1 + e − i α � � X ( z ) + e − 2 i α X ( z − πτ ) L ( z ) = − 1 − e 3 i α e i α + 5 i πτ ϑ ( z − 2 πτ, 3 τ ) ϑ ( z − α 2 + 2 πτ 3 ϑ ( πτ, 3 τ ) ϑ ′ ( 0 , τ ) 3 , τ ) − ( 1 − e 3 i α ) ϑ ( α 2 − 2 πτ 3 , τ ) ϑ ′ ( 0 , 3 τ ) ϑ ( z , τ ) ϑ ( z , 3 τ ) We can extract E ( t , e i α ) = Q ( 0 , 0 ) ... Counting lattice walks by winding angle Andrew Elvey Price

  38. K REWERAS WALKS BY WINDING NUMBER : S OLUTION Recall: τ is determined by ϑ ′ ( 0 , 3 τ ) t = e − πτ i 4 i ϑ ( πτ, 3 τ ) + 6 ϑ ′ ( πτ, 3 τ ) . 3 The gf E ( t , e i α ) = Q ( 0 , 0 ) ≡ Q ( t , α, 0 , 0 ) is given by: � � 2 − 2 πτ e i α 3 ϑ ( πτ, 3 τ ) ϑ ′ ( α 3 , τ ) ϑ ′ ( 2 πτ, 3 τ ) 4 πτ i πτ i E ( t , e i α ) = e i α − e − e . 3 t ( 1 − e 3 i α ) ϑ ′ ( 0 , 3 τ ) 2 − 2 πτ ϑ ′ ( 0 , 3 τ ) ϑ ( α 3 , τ ) Counting lattice walks by winding angle Andrew Elvey Price

  39. K REWERAS WALKS BY WINDING NUMBER : S OLUTION Recall: τ is determined by ϑ ′ ( 0 , 3 τ ) t = e − πτ i 4 i ϑ ( πτ, 3 τ ) + 6 ϑ ′ ( πτ, 3 τ ) . 3 The gf E ( t , e i α ) = Q ( 0 , 0 ) ≡ Q ( t , α, 0 , 0 ) is given by: � � 2 − 2 πτ e i α 3 ϑ ( πτ, 3 τ ) ϑ ′ ( α 3 , τ ) ϑ ′ ( 2 πτ, 3 τ ) 4 πτ i πτ i E ( t , e i α ) = e i α − e − e . 3 t ( 1 − e 3 i α ) ϑ ′ ( 0 , 3 τ ) 2 − 2 πτ ϑ ′ ( 0 , 3 τ ) ϑ ( α 3 , τ ) Equivalently: Let q ( t ) ≡ q = t 3 + 15 t 6 + 279 t 9 + · · · satisfy T 1 ( 1 , q 3 ) t = q 1 / 3 4 T 0 ( q , q 3 ) + 6 T 1 ( q , q 3 ) . The gf for cell-centred Kreweras-lattice almost-excursions is: � � T 1 ( 1 , q 3 ) − q − 1 / 3 T 0 ( q , q 3 ) T 1 ( sq − 2 / 3 , q ) s − q − 1 / 3 T 1 ( q 2 , q 3 ) s E ( t , s ) = . ( 1 − s 3 ) t T 1 ( 1 , q 3 ) T 0 ( sq − 2 / 3 , q ) Counting lattice walks by winding angle Andrew Elvey Price

  40. Part 3: Walks in cones Counting lattice walks by winding angle Andrew Elvey Price

  41. W ALKS IN CONES WITH SMALL STEPS Quarter plane walks: Completely classified into rational, algebraic, D-finite, D-algebraic cases. [Mishna, Rechnitzer 09], [Bousquet-Mélou, Mishna 10], [Bostan, Kauers 10], [Fayolle, Raschel 10], [Kurkova, Raschel 12], [Melczer, Mishna 13], [Bostan, Raschel, Salvy 14], [Bernardi, Bousquet-Mélou, Raschel 17], [Dreyfus, Hardouin, Roques, Singer 18] Half plane walks: Easy Three quarter plane walks: Active area of research (Previously) solved in 6-12 of the 74 non-trivial cases [Bousquet-Mélou 16], [Raschel-Trotignon 19], [Budd 20], [Bousquet-Mélou, Wallner 20+] Walks on the slit plane C \ R < 0 : solved in all cases [Bousquet-Mélou, 01], [Bousquet-Mélou, Schaeffer, 02], [Rubey 05] Counting lattice walks by winding angle Andrew Elvey Price

  42. W ALKS IN THE 3/4- PLANE : SOLVED CASES D-finite Not D-finite This work [B-M, W 20+] [Budd 20] [R,T 19] [B-M 16] [D,T 20] [Bousquet-Mélou 16],[Raschel, Trotignon 19], [Budd 20], [Bousquet-Mélou, Wallner 20+] Counting lattice walks by winding angle Andrew Elvey Price

  43. W ALKS IN THE 5/4- PLANE : SOLVED CASES D-finite This work [Budd 20] [Budd 20] Counting lattice walks by winding angle Andrew Elvey Price

  44. W ALKS IN THE 6/4- PLANE : SOLVED CASES D-finite This work [Budd 20] [Budd 20] Counting lattice walks by winding angle Andrew Elvey Price

  45. W ALKS IN THE 7/4- PLANE : SOLVED CASES D-finite This work [Budd 20] [Budd 20] Counting lattice walks by winding angle Andrew Elvey Price

  46. C OUNTING K REWERAS WALKS IN A CONE A B R B In the upper half plane: Use reflection principle #( Walks from A to B above R ) = #( Walks from A to B ) − #( Walks from A to B through R ) = #( Walks from A to B ) − #( Walks from A to B ) Counting lattice walks by winding angle Andrew Elvey Price

  47. C OUNTING K REWERAS EXCURSIONS IN 5 / 6- PLANE ✛✻ ❅ ❘ -excursions avoiding a quadrant. New result: ≡ Counting lattice walks by winding angle Andrew Elvey Price

  48. C OUNTING K REWERAS EXCURSIONS IN 5 / 6- PLANE ✛✻ ❅ ❘ -excursions avoiding a quadrant. New result: Equivalently: Walks avoiding the blue and green lines Counting lattice walks by winding angle Andrew Elvey Price

  49. C OUNTING K REWERAS EXCURSIONS IN 5 / 6- PLANE ✛✻ ❅ ❘ -excursions avoiding a quadrant. New result: Equivalently: Walks avoiding the blue and green lines Counting lattice walks by winding angle Andrew Elvey Price

  50. C OUNTING K REWERAS EXCURSIONS IN 5 / 6- PLANE ✛✻ ❅ ❘ -excursions avoiding a quadrant. New result: Equivalently: Walks avoiding the blue and green lines Reflection principle: For walks passing through at least one such line: reflect walk after first intersection. Winding angle α → − 4 π 3 − α or 2 π − α . Counting lattice walks by winding angle Andrew Elvey Price

  51. C OUNTING K REWERAS EXCURSIONS IN 5 / 6- PLANE ✛✻ ❅ ❘ -excursions avoiding a quadrant. New result: Equivalently: Walks avoiding the blue and green lines Reflection principle: For walks passing through at least one such line: reflect walk after first intersection. Winding angle α → − 4 π 3 − α or 2 π − α . Counting lattice walks by winding angle Andrew Elvey Price

  52. C OUNTING K REWERAS EXCURSIONS IN 5 / 6- PLANE ✛✻ ❅ ❘ -excursions avoiding a quadrant. New result: Equivalently: Walks avoiding the blue and green lines Reflection principle: For walks passing through at least one such line: reflect walk after first intersection. Winding angle α → − 4 π 3 − α or 2 π − α . Winding angle 10 π k → − 4 π 3 + 10 π j 3 . 3 #( Walks → avoiding lines ) �� � �� � [ s 5 k ]˜ [ s 5 k − 2 ]˜ = E ( t , s ) − E ( t , s ) k ∈ Z k ∈ Z 4 = 1 � � � � 4 π ij 2 π i � ˜ 1 − e t , e E 5 5 5 j = 1 Counting lattice walks by winding angle Andrew Elvey Price

  53. C OUNTING K REWERAS EXCURSIONS IN 5 / 6- PLANE ✛✻ ❅ ❘ -excursions avoiding a quadrant. New result: Equivalently: Walks avoiding the blue and green lines Reflection principle: For walks passing through at least one such line: reflect walk after first intersection. Winding angle α → − 4 π 3 − α or 2 π − α . Winding angle 10 π k → − 4 π 3 + 10 π j 3 . 3 #( Walks → avoiding lines ) �� � �� � [ s 5 k ]˜ [ s 5 k − 2 ]˜ = E ( t , s ) − E ( t , s ) k ∈ Z k ∈ Z 4 = 1 � � � � 4 π ij 2 π i � ˜ 1 − e t , e E 5 5 5 j = 1 Counting lattice walks by winding angle Andrew Elvey Price

  54. C OUNTING K REWERAS EXCURSIONS IN k / 6- PLANE More generally: Let C k , r ( t ) count whole-plane Kreweras excursions... Starting adjacent to the origin, Avoiding the origin, Having winding angle 0, � � 3 , ( k − r ) π − r π Having intermediate winding angles restricted to 3 I.e., Kreweras excursions in the k / 6-plane Counting lattice walks by winding angle Andrew Elvey Price

  55. C OUNTING K REWERAS EXCURSIONS IN k / 6- PLANE More generally: Let C k , r ( t ) count whole-plane Kreweras excursions... Starting adjacent to the origin, Avoiding the origin, Having winding angle 0, � � 3 , ( k − r ) π − r π Having intermediate winding angles restricted to 3 I.e., Kreweras excursions in the k / 6-plane Previous slide: 4 C 5 , 2 ( t ) = 1 � � � � 4 π ij 2 π i � ˜ 1 − e t , e . E 5 5 5 j = 1 More generally: k − 1 C k , r ( t ) = 1 � 2 π ijr � � 2 π ij � � ˜ 1 − e E t , e . k k k j = 1 Counting lattice walks by winding angle Andrew Elvey Price

  56. Part 4: Analysis of solutions Counting lattice walks by winding angle Andrew Elvey Price

  57. A NALYSIS OF SOLUTION From the exact solution we extract: Asymptotic distribution ([Bélisle, 1989]): For random excursions of length n , winding angle has asymptotic density c log( n ) 4 ( x − 1 ) e x + ( x + 1 ) e − x . ( e x − e − x ) 2 Asymptotics ([Denisov, Wachtel, 2015]): Let c n count Kreweras-lattice excursions in a cone of angle α ∈ π 3 N . k sin 2 � π 2 · 3 5 − 6 � � n − 1 − 3 k k 3 n . c n ∼ − � 2 π − 3 π k 2 � �� � 1 + 2 cos Γ k k Conditions for algebraicity: Let C α ( t ) count Kreweras-lattice excursions in a cone of angle α ∈ π 3 N . This satisfies a non-trivial polynomial equation P ( C α ( t ) , t ) = 0 if and only if α / ∈ π Z . (uses modular forms as in [Zagier, 08] and [E.P., Zinn-Justin, 20]) Counting lattice walks by winding angle Andrew Elvey Price

  58. A NALYSIS OF SOLUTION : A SYMPTOTICS Fix α . τ = − 1 q = e 2 π i ˆ τ , the dominant singularity t = 1 / 3 of Writing ˆ 3 τ and ˆ ˜ E ( t , e i α ) corresponds to ˆ q = 0. Counting lattice walks by winding angle Andrew Elvey Price

  59. A NALYSIS OF SOLUTION : A SYMPTOTICS Fix α . τ = − 1 q = e 2 π i ˆ τ , the dominant singularity t = 1 / 3 of Writing ˆ 3 τ and ˆ ˜ E ( t , e i α ) corresponds to ˆ q = 0. Series in ˆ q : t = 1 q 2 + O (ˆ q 3 ) 3 − 3 ˆ q + 18 ˆ 27 α e i α � � t ˜ 3 α 3 α E ( t , e i α ) = a 0 + a 1 ˆ 2 π + o q − 2 π ( 1 + e i α + e 2 i α )ˆ q ˆ q , 2 π → ˜ E ( t , e i α ) as a series in ( 1 − 3 t ) , Counting lattice walks by winding angle Andrew Elvey Price

  60. A NALYSIS OF SOLUTION : A SYMPTOTICS Fix α . τ = − 1 q = e 2 π i ˆ τ , the dominant singularity t = 1 / 3 of Writing ˆ 3 τ and ˆ ˜ E ( t , e i α ) corresponds to ˆ q = 0. Series in ˆ q : t = 1 q 2 + O (ˆ q 3 ) 3 − 3 ˆ q + 18 ˆ 27 α e i α � � t ˜ 3 α 3 α E ( t , e i α ) = a 0 + a 1 ˆ 2 π + o q − 2 π ( 1 + e i α + e 2 i α )ˆ q ˆ q , 2 π → ˜ E ( t , e i α ) as a series in ( 1 − 3 t ) , → 3 5 − 3 α π e α i α � n − 3 α [ t n ]˜ E ( t , e i α ) ∼ − 2 π − 1 3 n , 2 π ( 1 + e α i + e 2 α i )Γ − 3 α � 2 π k sin 2 � r π 2 · 3 5 − 6 � � n − 1 − 3 [ t n ] C k , r ( t ) ∼ − k k 3 n . � 2 π − 3 π k 2 � �� � 1 + 2 cos Γ k k Counting lattice walks by winding angle Andrew Elvey Price

  61. A NALYSIS OF SOLUTION : A SYMPTOTICS Fix α . τ = − 1 q = e 2 π i ˆ τ , the dominant singularity t = 1 / 3 of Writing ˆ 3 τ and ˆ ˜ E ( t , e i α ) corresponds to ˆ q = 0. Series in ˆ q : t = 1 q 2 + O (ˆ q 3 ) 3 − 3 ˆ q + 18 ˆ 27 α e i α � � t ˜ 3 α 3 α E ( t , e i α ) = a 0 + a 1 ˆ 2 π + o q − 2 π ( 1 + e i α + e 2 i α )ˆ q ˆ q , 2 π → ˜ E ( t , e i α ) as a series in ( 1 − 3 t ) , → 3 5 − 3 α π e α i α � n − 3 α [ t n ]˜ E ( t , e i α ) ∼ − 2 π − 1 3 n , 2 π ( 1 + e α i + e 2 α i )Γ − 3 α � 2 π k sin 2 � r π 2 · 3 5 − 6 � � n − 1 − 3 [ t n ] C k , r ( t ) ∼ − k k 3 n . � 2 π − 3 π k 2 � �� � 1 + 2 cos Γ k k Previously: Terms 3 n and n − 1 − 3 k known [Denisov, Wachtel, 2015]. Counting lattice walks by winding angle Andrew Elvey Price

  62. A NALYSIS OF SOLUTION : A LGEBRAICITY Recall: ϑ ( z , τ ) is differentially algebraic → so are ˜ E ( t , s ) and Q ( t , α, x , y ) . For α ∈ π 3 ( Q \ Z ) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]): Counting lattice walks by winding angle Andrew Elvey Price

  63. A NALYSIS OF SOLUTION : A LGEBRAICITY Recall: ϑ ( z , τ ) is differentially algebraic → so are ˜ E ( t , s ) and Q ( t , α, x , y ) . For α ∈ π 3 ( Q \ Z ) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]): Q ( t , α, X ( z ) , 0 ) and X ( z ) are elliptic functions with the same periods ⇒ Q ( t , α, x , 0 ) is algebraic in x . Counting lattice walks by winding angle Andrew Elvey Price

  64. A NALYSIS OF SOLUTION : A LGEBRAICITY Recall: ϑ ( z , τ ) is differentially algebraic → so are ˜ E ( t , s ) and Q ( t , α, x , y ) . For α ∈ π 3 ( Q \ Z ) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]): Q ( t , α, X ( z ) , 0 ) and X ( z ) are elliptic functions with the same periods ⇒ Q ( t , α, x , 0 ) is algebraic in x . E ( t ( τ ) , e i α ) and t ( τ ) are modular functions of τ ⇒ E ( t , e i α ) is algebraic in t . Same for ˜ E ( t ( τ ) , e i α ) . Counting lattice walks by winding angle Andrew Elvey Price

  65. A NALYSIS OF SOLUTION : A LGEBRAICITY Recall: ϑ ( z , τ ) is differentially algebraic → so are ˜ E ( t , s ) and Q ( t , α, x , y ) . For α ∈ π 3 ( Q \ Z ) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]): Q ( t , α, X ( z ) , 0 ) and X ( z ) are elliptic functions with the same periods ⇒ Q ( t , α, x , 0 ) is algebraic in x . E ( t ( τ ) , e i α ) and t ( τ ) are modular functions of τ ⇒ E ( t , e i α ) is algebraic in t . Same for ˜ E ( t ( τ ) , e i α ) . Combining these ideas: Q ( t , α, x , y ) is algebraic in t , x and y . Counting lattice walks by winding angle Andrew Elvey Price

  66. A NALYSIS OF SOLUTION : A LGEBRAICITY Recall: ϑ ( z , τ ) is differentially algebraic → so are ˜ E ( t , s ) and Q ( t , α, x , y ) . For α ∈ π 3 ( Q \ Z ) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]): Q ( t , α, X ( z ) , 0 ) and X ( z ) are elliptic functions with the same periods ⇒ Q ( t , α, x , 0 ) is algebraic in x . E ( t ( τ ) , e i α ) and t ( τ ) are modular functions of τ ⇒ E ( t , e i α ) is algebraic in t . Same for ˜ E ( t ( τ ) , e i α ) . Combining these ideas: Q ( t , α, x , y ) is algebraic in t , x and y . Recall: The gf for excursions in the k / 6-plane is k − 1 C k , r ( t ) = 1 � 2 π ijr � � 2 π ij � � ˜ 1 − e E t , e . k k k j = 1 Counting lattice walks by winding angle Andrew Elvey Price

  67. A NALYSIS OF SOLUTION : A LGEBRAICITY Recall: ϑ ( z , τ ) is differentially algebraic → so are ˜ E ( t , s ) and Q ( t , α, x , y ) . For α ∈ π 3 ( Q \ Z ) we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]): Q ( t , α, X ( z ) , 0 ) and X ( z ) are elliptic functions with the same periods ⇒ Q ( t , α, x , 0 ) is algebraic in x . E ( t ( τ ) , e i α ) and t ( τ ) are modular functions of τ ⇒ E ( t , e i α ) is algebraic in t . Same for ˜ E ( t ( τ ) , e i α ) . Combining these ideas: Q ( t , α, x , y ) is algebraic in t , x and y . Recall: The gf for excursions in the k / 6-plane is k − 1 C k , r ( t ) = 1 � 2 π ijr � � 2 π ij � � ˜ 1 − e E t , e . k k k j = 1 Algebraic iff 3 ∤ k . (always D-finite). Counting lattice walks by winding angle Andrew Elvey Price

  68. Part 5: Other lattices Kreweras lattice Triangular Lattice Square Lattice King Lattice Counting lattice walks by winding angle Andrew Elvey Price

  69. CELL - CENTRED LATTICES Important property: Decomposable into congruent sectors Kreweras lattice Triangular Lattice Square Lattice King Lattice Counting lattice walks by winding angle Andrew Elvey Price

  70. CELL - CENTRED LATTICES Important property: Decomposable into congruent sectors Kreweras lattice Triangular Lattice Square Lattice King Lattice Counting lattice walks by winding angle Andrew Elvey Price

  71. VERTEX - CENTRED LATTICES Decompose into rotationally congruent sectors Kreweras lattice Triangular Lattice Square Lattice King Lattice Counting lattice walks by winding angle Andrew Elvey Price

  72. VERTEX - CENTRED LATTICES Decompose into rotationally congruent sectors Kreweras lattice Triangular Lattice Square Lattice King Lattice Counting lattice walks by winding angle Andrew Elvey Price

  73. R ECALL : K REWERAS ALMOST - EXCURSIONS ∞ ( − 1 ) n ( 2 n + 1 ) k q n ( n + 1 ) / 2 ( u n + 1 − ( − 1 ) k u − n ) � Define T k ( u , q ) = n = 0 = ( u ± 1 ) − 3 k q ( u 2 ± u − 1 ) + 5 k q 3 ( u 3 ± u − 2 ) + O ( q 6 ) . Let q ( t ) ≡ q = t 3 + 15 t 6 + 279 t 9 + · · · satisfy T 1 ( 1 , q 3 ) t = q 1 / 3 4 T 0 ( q , q 3 ) + 6 T 1 ( q , q 3 ) . The gf for cell-centred Kreweras-lattice almost-excursions is: � � s − q − 1 / 3 T 1 ( q 2 , q 3 ) T 1 ( 1 , q 3 ) − q − 1 / 3 T 0 ( q , q 3 ) T 1 ( sq − 2 / 3 , q ) s E ( t , s ) = . ( 1 − s 3 ) t T 1 ( 1 , q 3 ) T 0 ( sq − 2 / 3 , q ) The gf for vertex-centred Kreweras-lattice almost-excursions is: � T 1 ( q , q 3 ) 2 E ( t , s ) = s ( 1 − s ) q − 2 T 0 ( q , q 3 ) 2 T 0 ( q , q 3 ) 2 − T 2 ( q , q 3 ) 6 T 1 ( 1 , q ) + T 3 ( 1 , q 3 ) T 0 ( q , q 3 ) − T 2 ( s , q ) 2 T 0 ( s , q ) + T 3 ( 1 , q ) � 3 ˜ . t ( 1 − s 3 ) T 1 ( 1 , q 3 ) 2 3 T 1 ( 1 , q 3 ) Counting lattice walks by winding angle Andrew Elvey Price

  74. S QUARE LATTICE ALMOST - EXCURSIONS ∞ ( − 1 ) n ( 2 n + 1 ) k q n ( n + 1 ) / 2 ( u n + 1 − ( − 1 ) k u − n ) � Define T k ( u , q ) = n = 0 = ( u ± 1 ) − 3 k q ( u 2 ± u − 1 ) + 5 k q 3 ( u 3 ± u − 2 ) + O ( q 6 ) . Let q ( t ) ≡ q = t + 4 t 3 + 34 t 5 + 360 t 7 + · · · satisfy qT 0 ( q 2 , q 8 ) T 1 ( 1 , q 8 ) t = 2 T 0 ( q 4 , q 8 )( T 0 ( q 2 , q 8 ) + 2 T 1 ( q 2 , q 8 )) . The gf for cell-centred Square-lattice almost-excursions is: s 2 s − s − 1 + T 0 ( q 4 , q 8 ) qT 1 ( 1 , q 8 ) − T 0 ( q 4 , q 8 ) T 1 ( s − 1 q , q 2 ) � � . qT 1 ( 1 , q 8 ) T 0 ( s − 1 q , q 2 ) ( 1 − s 4 ) t The gf for vertex-centred Square-lattice almost-excursions is: sT 0 ( q 4 , q 8 ) 1 + 2 T 1 ( q 2 , q 8 ) T 0 ( q 2 , q 8 ) + ( 1 − s ) T 1 ( s − 1 , q 2 ) � � . ( 1 + s ) T 0 ( s − 1 , q 2 ) qt ( 1 + s 2 ) T 1 ( 1 , q 8 ) Counting lattice walks by winding angle Andrew Elvey Price

  75. Part 6: Final comments Counting lattice walks by winding angle Andrew Elvey Price

  76. J ACOBI THETA FUNCTION / W EIERSTRASS FUNCTION PARAMETERISATION COMBINATORIAL FUNCTIONAL EQUATION SOLUTION METHOD Counting lattice walks by winding angle Andrew Elvey Price

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend