cosmic ray propagation in the light of the myriad model
play

Cosmic-ray propagation in the light of the Myriad model Yoann - PowerPoint PPT Presentation

Cosmic-ray propagation in the light of the Myriad model Yoann Genolini In collaboration with: Pasquale Serpico, Pierre Salati & Richard Taillet Annecy-Le-Vieux, FRANCE BUSAN July 17th, 2017 1 A break in Galactic cosmic rays nuclei S.Ting


  1. Cosmic-ray propagation in the light of the Myriad model Yoann Genolini In collaboration with: Pasquale Serpico, Pierre Salati & Richard Taillet Annecy-Le-Vieux, FRANCE BUSAN July 17th, 2017 1

  2. A break in Galactic cosmic rays nuclei S.Ting presentation, CERN, december 2016 ⇒ A universal kinck at R ≥ 200 GV ? ∆ kinck ≈ 0 . 12 − 0 . 13 2

  3. A break in Galactic cosmic rays nuclei Yang presentation, XSCR, march 2017 ⇒ A universal kinck at R ≥ 200 GV ? ∆ kinck ≈ 0 . 12 − 0 . 13 2

  4. Origin of the break ? Standard expectation ? 3

  5. Origin of the break ? ⇒ Explanation 1 : break in the diffusion coefficient ? -Blasi, P., Amato, E., Serpico, P. D. (2012). PRL, 109(6), 061101. -Tomassetti, N. (2012). The Astrophysical Journal Letters, 752(1), L13. 3

  6. Origin of the break ? ⇒ Explanation 2 : break in the source spectrum ? -Ptuskin, V., Zirakashvili, V., Seo, E. S. (2013). APJ, 763(1), 47. -Tomassetti, N., Donato, F. (2015). APJL, 803(2), L15. 3

  7. Origin of the break ? ⇒ Explanation 3 : local source contribution ? -Kachelriess, M., Neronov, A., Semikoz, D. V. (2015). PRL, 115(18). -Erlykin, A. D., Wolfendale, A. W. (2015). JPG, 42(12), 125201. 3

  8. Origin of the break ? ⇒ Explanation 3 : local source contribution ? Genolini, Y., Salati, P., Serpico, P. D., & Taillet, R. (2017). Stable laws and cosmic ray physics. A&A, 600, A68. ⇒ Explanation 1 : break in the diffusion coefficient ? Indications for a high-rigidity break in the cosmic-ray diffusion coefficient, Preprint arxiv: 1706.09812 4

  9. Origin of the break ? ⇒ Explanation 3 : local source contribution ? Genolini, Y., Salati, P., Serpico, P. D., & Taillet, R. (2017). Stable laws and cosmic ray physics. A&A, 600, A68. ⇒ Explanation 1 : break in the diffusion coefficient ? Indications for a high-rigidity break in the cosmic-ray diffusion coefficient, Preprint arxiv: 1706.09812 4

  10. Explanation 3 one question would be.. May a particular configuration of the sources explain break features ? 1.4 10 4 10 4 Φ p .Ek 2 . 7 6 10 3 Fiducial 2 10 3 CREAM 2005 AMS 2015 10 2 10 3 10 4 10 5 1 10 Kinetic Energy Ek [GeV] ⇒ P ( Ψ ) ? 5

  11. The Pure diffusive regime ∂ Ψ ∂t − ∇ r . ( K ∇ r Ψ) = Q ( r , E ) ⇒ Time independent equation ! 6

  12. The Pure diffusive regime − ∇ r . ( K ∇ r Ψ) = Q ( r , E ) ⇒ Time independent equation ! ⇒ Continuous production in space and time ! 6

  13. The Pure diffusive regime − ∇ r . ( K ∇ r Ψ) = Q ( r , E ) ⇒ Time independent equation ! ⇒ Continuous production in space and time ! Q ( r , t ) = � N q i δ ( r i − r ) δ ( t i − t ) i 6

  14. The Pure diffusive regime − ∇ r . ( K ∇ r Ψ) = Q ( r , E ) ⇒ Time independent equation ! ⇒ Continuous production in space and time ! Q ( r , t ) = � N q i δ ( r i − r ) δ ( t i − t ) i �� N � � Q ( r , t ) � = q i δ ( r i − r ) δ ( t i − t ) i 6

  15. The Pure diffusive regime − ∇ r . ( K ∇ r Ψ) = Q ( r , E ) ⇒ Time independent equation ! ⇒ Continuous production in space and time ! Q ( r , t ) = � N q i δ ( r i − r ) δ ( t i − t ) i q ν � Q ( r , t ) � ≃ V MW Θ( h − | z | ) Θ( R gal − r ) V MW = 2 h πR 2 and ν ≈ 3 SNs/century 6

  16. The Pure diffusive regime V MW = 2 h πR 2 ν ≈ 3 SNs/century 7

  17. Sources are discrete in space and time! Büsching, I., Kopp, A., Pohl, M., Schlickeiser, R., Perrot, C., & Grenier, I. (2005). The Astrophysical Journal, 619(1), 314. → Stochastic behaviour ! 8

  18. Statistical treatment of the flux The flux from N sources writes : N N � � Ψ = ψ i ⇒ � Ψ � = � ψ � = N � ψ � i =1 i =1 One can expect to compute � ψ � from p ( ψ ) : � ∞ � ψ � = dψ ψ p ( ψ ) 0 With : � p ( ψ ) = D ( r s , t s ) d r s d t s (1) � �� � V ψ Normalized distribution in space and time for one source Integration over the domain of space and time that gives a flux between ψ and ψ + d ψ . 9

  19. To measure ψ from one source � p ( ψ ) = D ( r s , t s ) d r s d t s (2) V ψ V ψ : domain of space and time that gives a flux between ψ and ψ + d ψ . Surface equation in pure diffusive regime : � � q r 2 ψ = (4 π K t ) 3 / 2 exp 4 K t D ( r s , t s ) can assume two limiting behaviours, 2D or 3D ! � ψ − 8 / 3 3 D For : ψ ≫ � ψ � we have, p ( ψ ) ∝ ψ − 7 / 3 2 D 10

  20. Variance of the total flux N � Ψ = ψ i ⇒ p ( ψ ) → P (Ψ) i =1 Central limit theorem ? ψ = N � ψ 2 � − � Ψ � 2 Ψ = � Ψ 2 � − � Ψ � 2 = N σ 2 σ 2 N � � � ∞ ψ 1 / 3 � ∞ cte = ∞ 3 D ψ 2 p ( ψ ) dψ ∝ � ψ 2 � = � ψ 2 / 3 � ∞ cte = ∞ 2 D 0 The variance diverges 11

  21. But actually the pdf exists! Generalised central limit theorem ? The heavy tail behaviour conditioned the stable law limit ! � ∞ p ( ψ ′ ) d ψ ′ → ψ →∞ ψ α C ( ψ ) = η > 0 ∀ ψ � 0 , C ( ψ ) ≡ lim ψ For N sufficiently large : � Ψ − � Ψ � � 1 P (Ψ) → S [ α, 1 , 1 , 0; 1] σ N σ N � � � 1 /α 5 / 3 3 D η π N With : α = 2 D and σ N = 2Γ( α ) sin ( α π/ 2) 4 / 3 12

  22. But actually the pdf exists! σ N = 1 , α = 5 / 3 → 3 D , α = 4 / 3 → 2 D ⇒ So one can define confidence intervals, pvalues... 13

  23. Simulation check For example at 1TeV : 10 0 10 0 10 1 Stable law α = 4 / 3 10 − 1 Stable law α = 5 / 3 10 − 1 10 0 Gaussian law σ sim 10 − 2 10 − 2 Simulations 10 − 1 p value p value f 10 − 3 10 − 3 pd 10 − 2 E=1TeV E=1TeV E=1TeV 10 − 4 10 − 4 10 − 3 10 − 5 10 − 5 10 − 4 10 − 6 10 − 6 50 50 50 ∆[%] 0 0 0 − 50 − 50 − 50 − 0 . 06 − 0 . 04 − 0 . 02 0 . 00 0 . 02 0 . 04 0 . 06 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 log 10 (Ψ / � Ψ � sim ) log 10 (Ψ / � Ψ � sim ) log 10 (Ψ / � Ψ � sim ) Simulation generated 10 6 configurations of galaxies. Transition from the 2D to the 3D regime ! ⇒ Genolini, Y., Salati, P., Serpico, P. D., & Taillet, R. (2017). Stable laws and cosmic ray physics. A&A, 600, A68. 14

  24. On the form of p ( ψ ) The diffusive propagator is not causal for some region in space and time... ◮ Loophole : reevaluation of � p ( ψ ) = D ( r s , t s ) d r s d t s V causal ψ � ψ − 8 / 3 for : ψ < ψ c ◮ p ( ψ ) ∝ ψ − 11 / 3 for : ψ > ψ c The variance converges again! Shall we use the central limit theorem ?... Not really if ψ c is very large. Simulations : Stable law is a very good approximation till 10TeV ! 15

  25. Application of the theory! May a particular configuration of the sources explain break features ? 1.4 10 4 10 4 Φ p .Ek 2 . 7 6 10 3 Fiducial 2 10 3 CREAM 2005 AMS 2015 10 2 10 3 10 4 10 5 1 10 Kinetic Energy Ek [GeV] ⇒ P ( Ψ ) ? 16

  26. Probability of such an excess We compute an upper value of the probability that a particular configuration of the sources gives a flux Ψ at 12.8TeV : � ∞ � + ∞ p value = dψ exp dψ th p ( ψ exp | ψ th ) p ( ψ th | Model ) , Ψ exp 0 Example for the benchmark models : Models MIN MED MAX Probabilities(Stable law 4/3) 0.031 0.0082 0.0013 17

  27. A theory of stochasticity for CRs More generally.. Effect of stochasticity @ a given energy Could be great to include energy correlations Theoretical uncertainty that should be taken into account 18

  28. Questions ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? More details in : Genolini, Y., Salati, P., Serpico, P. D., & Taillet, R. (2017). Stable laws and cosmic ray physics. A&A, 600, A68. 19

  29. BACKUP 20

  30. The break feature of the protons [Kachelrieß et al., 2015] • Local flux dominated by a 2Myr old SNR in order to explain the knee.. • D ⊥ ≪ D � • At E = 1 TeV, Ψ ≈ 2 . 86 � Ψ � ⇒ P (Ψ) can be used for an homogeneous diffusion model. Models MIN MED MAX Probabilities 0.0072 0.0012 0.00016 21

  31. The break feature of the protons [Tomassetti et al., 2015] • Two component model, without prior on their number of sources • Homogeneous diffusion • At E = 10 GeV, Ψ ≈ 3 . 3 � Ψ � ⇒ P (Ψ) can be used ! The probability @10GeV is 8 . 6 × 10 − 5 ! 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend