convolutional neural networks cnns recurrent neural
play

Convolutional Neural Networks (CNNs) Recurrent Neural Networks - PowerPoint PPT Presentation

Convolutional Neural Networks (CNNs) Recurrent Neural Networks (RNNs) L1 Scalar Processor L0 L0 M*V Processor N N N N N N Project Brainwave Pretrained DNN Model Scalable DNN Hardware Neural Processing Unit Microservice Extract


  1. Convolutional Neural Networks (CNNs) Recurrent Neural Networks (RNNs)

  2. L1 Scalar Processor L0 L0 M*V Processor N N N N N N Project Brainwave Pretrained DNN Model Scalable DNN Hardware Neural Processing Unit Microservice

  3. Extract parallelism from a single thread of execution Achieve high utilization without batching Scale to O(100k) spatial units Synthesis specialization

  4. Serial dependence

  5. Extract parallelism from a single thread of execution Achieve high utilization without batching Scale to O(100k) spatial units Synthesis specialization

  6. O(0) O(N 2 ) Batched RNNs

  7. O(0) O(N) O(N 2 ) Batched RNNs

  8. Extract parallelism from a single thread of execution Achieve high utilization without batching Scale to O(100k) spatial units Synthesis specialization

  9. 1. void LSTM(int steps) { 16. mv_mul(Uc); 2. for (int t = 0; t < steps; t++) { 17. vv_add(xWc); 3. v_rd(NetQ); 18. v_tanh(); 4. v_wr(InitialVrf, xt); 19. vv_mul(it); 5. v_rd(InitialVrf, xt); 20. vv_add(ft_mod); 6. mv_mul(Wf); 21. v_wr(MultiplyVrf, c_prev); 7. vv_add(bf); 22. v_wr(InitialVrf, ct); 8. v_wr(AddSubVrf, xWf); 23. v_rd(InitialVrf, ct); 9. v_rd(InitialVrf, h_prev); 24. v_tanh(); 10. mv_mul(Uf); 25. vv_mul(ot); 11. vv_add(xWf); 26. v_wr(InitialVrf, h_prev); 12. v_sigm(); 27. v_wr(NetQ); 13. vv_mul(c_prev); 28. } 14. v_wr(AddSubVrf, ft_mod); 29. } 15. v_rd(InitialVrf, h_prev);

  10. Extract parallelism from a single thread of execution Achieve high utilization without batching Scale to O(100k) spatial units Synthesis specialization

  11. + ×

  12. × + × + × + × + × + × + × + ×

  13. × + × + × + × + × + × + × + × × + × + × + × + × + × + × + × × + × + × + × + × + × + × + × × + × + × + × + × + × + × + ×

  14. 1 2 3 4

  15. Dispatcher D D D D

  16. Scalar Instructions Processor MVM Top Level Scheduler Scheduler

  17. Extract parallelism from a single thread of execution Achieve high utilization without batching Scale to O(100k) spatial units Synthesis specialization

  18. DeepBench RNN: GRU-2816, batch=1, 71B OPs/serve Device Node Latency Effective TFLOPS Utilization BW-NPU (Stratix 10, FP8) Intel 2 ms 35.9 74.8% 14nm CNN: ResNet-50, batch=1, 7.7B OPs/serve Device Node Latency Effective TFLOPS Utilization BW-NPU (Arria 10, FP11) TSMC 1.64 ms 4.7 66% 20nm

  19. https://github.com/Azure/aml-real-time-ai

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend