conventions and references
play

Conventions and references Double-log enhancement: two additional - PowerPoint PPT Presentation

Resummation of large- x and small- x double logarithms in deep-inelastic scattering & semi-inclusive annihilation Andreas Vogt (University of Liverpool) partly with G. Soar, A. Almasy (UoL), S. Moch (DESY), J. Vermaseren (NIKHEF) Splitting


  1. Resummation of large- x and small- x double logarithms in deep-inelastic scattering & semi-inclusive annihilation Andreas Vogt (University of Liverpool) partly with G. Soar, A. Almasy (UoL), S. Moch (DESY), J. Vermaseren (NIKHEF) Splitting and coefficient functions and their endpoint behaviour 4 th -order / all-order large- x logs from physical evolution kernels Large- x & small- x via unfactorized D -dim. structure functions Galileo Galilei Institute, Florence, 08-09-11 p.1

  2. Conventions and references Double-log enhancement: two additional logs L per additional order in α s ˛ ∼ L ℓ 0 ( # L 2 n + # L 2 n − 1 + # L 2 n − 2 + . . . ) + . . . ˛ Q α n s LL NLL NNLL LL, NLL, . . . : leading logarithms, next-to-leading logarithms, . . . Counting of a resummation, cf. small- x , not of a (stronger) exponentiation, cf. soft gluons: NNLL resummation ⇔ (re-expanded) NLL exponentiation p.2

  3. Conventions and references Double-log enhancement: two additional logs L per additional order in α s ˛ ∼ L ℓ 0 ( # L 2 n + # L 2 n − 1 + # L 2 n − 2 + . . . ) + . . . ˛ Q α n s LL NLL NNLL LL, NLL, . . . : leading logarithms, next-to-leading logarithms, . . . Counting of a resummation, cf. small- x , not of a (stronger) exponentiation, cf. soft gluons: NNLL resummation ⇔ (re-expanded) NLL exponentiation Non-singlet NNLL (NLL for DY) resummation from physical kernels MV, arXiv:0902.2342 (JHEP), arXiv:0909.2124 (JHEP) Singlet NNLL for fourth-order splitting functions and F L in DIS SMVV, arXiv:0912.0369 (NPB), arXiv:1008.0952 (proc. LL 2010) Large- x resummation of splitting & coefficient functions in DIS and SIA ∗ A.V., arXiv:1005.1606 (PLB); ASV, arXiv:1012.3352 (JHEP); ∗ to appear Small- x resummation of splitting & coefficient functions in SIA and DIS ∗ A.V., arXiv:1108.2993 (JHEP); ∗ to appear p.2

  4. Hard lepton-hadron processes in pQCD (I) Inclusive deep-inelastic scattering (DIS), semi-incl. l + l − annihilation (SIA) l Left → right: DIS, q spacelike, Q 2 = − q 2 γ ∗ ( q ) P = ξp , f h i = parton distributions c ai i ( P ) Top → bottom: l + l − , q timelike, Q 2 = q 2 f h p = ξP , fragmentation distributions i h ( p ) Drell-Yan (DY) l + l − production: bottom → top, 2 nd hadron from right ( { . . . } ) p.3

  5. Hard lepton-hadron processes in pQCD (I) Inclusive deep-inelastic scattering (DIS), semi-incl. l + l − annihilation (SIA) l Left → right: DIS, q spacelike, Q 2 = − q 2 γ ∗ ( q ) P = ξp , f h i = parton distributions c ai i ( P ) Top → bottom: l + l − , q timelike, Q 2 = q 2 f h p = ξP , fragmentation distributions i h ( p ) Drell-Yan (DY) l + l − production: bottom → top, 2 nd hadron from right ( { . . . } ) DIS and SIA structure functions, DY cross section F a : coefficient functions h i i ( µ 2 ) { ⊗ f h ′ F a ( x, Q 2 ) = C a,i { j } ( α s ( µ 2 ) , µ 2 /Q 2 ) ⊗ f h j ( µ 2 ) } ( x ) + O (1 /Q (2) ) Scaling variables: x = Q 2 / (2 p · q ) in DIS etc. µ : renorm. / mass-fact. scale p.3

  6. Hard lepton-hadron processes in pQCD (II) Parton / fragmentation distributions f i : (renorm. group) evolution equations h i d P ( S,T ) d ln µ 2 f i ( ξ, µ 2 ) = ( α s ( µ 2 )) ⊗ f k ( µ 2 ) ( ξ ) ik ⊗ = Mellin convolution. Initial conditions incalculable in perturbative QCD. ⇒ predictions: fit-analyses of reference processes, universality of f i ( ξ, µ 2 ) p.4

  7. Hard lepton-hadron processes in pQCD (II) Parton / fragmentation distributions f i : (renorm. group) evolution equations h i d P ( S,T ) d ln µ 2 f i ( ξ, µ 2 ) = ( α s ( µ 2 )) ⊗ f k ( µ 2 ) ( ξ ) ik ⊗ = Mellin convolution. Initial conditions incalculable in perturbative QCD. ⇒ predictions: fit-analyses of reference processes, universality of f i ( ξ, µ 2 ) Expansion in α s : splitting functions P , coefficient fct’s c a of observables α s P (0) + α 2 s P (1) + α 3 s P (2) + α 4 s P (3) + . . . P = » – α n a c (0) + α s c (1) + α 2 s c (2) + α 3 s c (3) C a = + . . . a a a a s | {z } NLO: first real prediction of size of cross sections p.4

  8. Hard lepton-hadron processes in pQCD (II) Parton / fragmentation distributions f i : (renorm. group) evolution equations h i d P ( S,T ) d ln µ 2 f i ( ξ, µ 2 ) = ( α s ( µ 2 )) ⊗ f k ( µ 2 ) ( ξ ) ik ⊗ = Mellin convolution. Initial conditions incalculable in perturbative QCD. ⇒ predictions: fit-analyses of reference processes, universality of f i ( ξ, µ 2 ) Expansion in α s : splitting functions P , coefficient fct’s c a of observables α s P (0) + α 2 s P (1) + α 3 s P (2) + α 4 s P (3) + . . . P = » – α n a c (0) + α s c (1) + α 2 s c (2) + α 3 s c (3) C a = + . . . a a a a s | {z } NLO: first real prediction of size of cross sections NNLO, P (2) , c (2) a : first serious error estimate of pQCD predictions New: P (2) T now (almost) completely known AMV, arXiv:1107.2263 (NPB) ik p.4

  9. MS splitting functions at large x / large N R 1 0 dx ( x N − 1 {− 1 } ) f ( x ) { + } : M-convolutions → products Mellin trf. f ( N ) = ln n (1 − x ) ( − 1) n +1 ( − 1) n ln n +1 N + . . . , ln n (1 − x ) ln n N + . . . M M = = (1 − x ) + n + 1 N Diagonal splitting functions: no higher-order enhancement at N 0 , N − 1 1 P ( ℓ − 1) qq / gg ( N ) = A ( ℓ ) q / g ln N + B ( ℓ ) q / g + C ( ℓ ) N ln N + . . . , A g = C A /C F A q q / g . . . ; Korchemsky (89); Dokshitzer, Marchesini, Salam (05) p.5

  10. MS splitting functions at large x / large N R 1 0 dx ( x N − 1 {− 1 } ) f ( x ) { + } : M-convolutions → products Mellin trf. f ( N ) = ln n (1 − x ) ( − 1) n +1 ( − 1) n ln n +1 N + . . . , ln n (1 − x ) ln n N + . . . M M = = (1 − x ) + n + 1 N Diagonal splitting functions: no higher-order enhancement at N 0 , N − 1 1 P ( ℓ − 1) qq / gg ( N ) = A ( ℓ ) q / g ln N + B ( ℓ ) q / g + C ( ℓ ) N ln N + . . . , A g = C A /C F A q q / g . . . ; Korchemsky (89); Dokshitzer, Marchesini, Salam (05) Off-diagonal: double-log behaviour, colour structure with C F = C A − C F A C − 1 P ( ℓ ) − 1 P ( ℓ ) N ln 2 ℓ N # C l 1 gq / n = qg A F F f f ) C l − 1 N ln 2 ℓ − 1 N ( # C 1 + F + # C F + # n + . . . A A F Double logs ln n N , ℓ +1 ≤ n ≤ 2 ℓ vanish for C F = C A ( → SUSY case) p.5

  11. MS coefficient functions at large x / large N dσ q¯ 1 q ‘Diagonal’ [ O (1) ] coeff. fct’s for F 2 , 3 ,φ in DIS, F T ,A,φ in SIA, F DY = dQ 2 σ 0 2 , q /φ, g /... = # ln 2 ℓ N + . . . + N − 1 (# ln 2 ℓ − 1 N + . . . ) + . . . C ( ℓ ) N 0 parts: threshold exponentiation Sterman (87); Catani, Trentadue (89); . . . Exponents known to next-to-next-to-next-to-leading log (N 3 LL) accuracy - mod. A (4) ⇒ highest seven (DIS, SIA), six (DY, Higgs prod.) coefficients known to all orders DIS: MVV (05), DY / Higgs prod.: MV (05); Laenen, Magnea (05); Idilbi, Ji, Ma, Yuan (05) ( + SCET papers, from 06), SIA: Blümlein, Ravindran (06); MV, arXiv:0908.2746 (PLB) p.6

  12. MS coefficient functions at large x / large N dσ q¯ 1 q ‘Diagonal’ [ O (1) ] coeff. fct’s for F 2 , 3 ,φ in DIS, F T ,A,φ in SIA, F DY = dQ 2 σ 0 2 , q /φ, g /... = # ln 2 ℓ N + . . . + N − 1 (# ln 2 ℓ − 1 N + . . . ) + . . . C ( ℓ ) N 0 parts: threshold exponentiation Sterman (87); Catani, Trentadue (89); . . . Exponents known to next-to-next-to-next-to-leading log (N 3 LL) accuracy - mod. A (4) ⇒ highest seven (DIS, SIA), six (DY, Higgs prod.) coefficients known to all orders DIS: MVV (05), DY / Higgs prod.: MV (05); Laenen, Magnea (05); Idilbi, Ji, Ma, Yuan (05) ( + SCET papers, from 06), SIA: Blümlein, Ravindran (06); MV, arXiv:0908.2746 (PLB) ‘Off-diagonal’ [ O ( α s ) ] quantities: leading N − 1 double logarithms C ( ℓ ) φ, q / 2 , g /... = N − 1 (# ln 2 ℓ − 1 N + . . . ) + . . . Longitudinal DIS / SIA structure functions [ convention: ℓ = order in α s – 1] C ( ℓ ) C ( ℓ ) L , q = N − 1 (# ln 2 ℓ N + . . . ) + . . . , L , g = N − 2 (# ln 2 ℓ N + . . . ) + . . . p.6

  13. Flavour singlet – non-singlet decomposition δ ik P v qq + P s P q i q k = P ¯ = Quark-quark splitting functions: q i ¯ q k qq δ ik P v q + P s P q i ¯ q k = P ¯ = q i q k q¯ q¯ q P v P s qq , P s q : α 2 P v q : α 2 P s q � = P s qq : α 3 qq = O ( α s ) q¯ s q¯ s q¯ s Three types of difference (non-singlet) combinations: P ± ns = P v qq ± P v q , P v q¯ ns Evolution of gluon and flavour-singlet quark distributions g and q s „ « „ « „ « q s = P n d q s P qq P qg q s f ⊗ r =1 ( q r + ¯ q r ) , = d ln µ 2 g P gq P gg g P qq = P + f ( P s qq + P s qq ) ≡ P + ns + n ns + P ps with (ps = ‘pure singlet’) ¯ Quark coefficient fct’s: analogous decomposition C a, q { ¯ q } = C a, ns + C a, ps p.7

  14. Second- and third-order N -space C 2 , ns in DIS 8 20 c 2,2 (N) c 2,3 (N) 6 15 all N 0 all N 0 + all N − 1 + all N − 1 4 10 exact exact 2 5 0 0 n f = 4 ( ∗ 1/160) n f = 4 ( ∗ 1/2000) -2 -5 0 5 10 15 20 0 5 10 15 20 N N N − 1 terms relevant over full range shown, O ( N − 2 ) sizeable only at N < 5 Sum of N − 1 ln k N looks almost constant: half of maximum only at N ≃ 150 p.8

  15. Second-order C T in SIA and C DY in N -space 100 20 c T,2 (N) c DY,2 (N) 80 all N 0 all N 0 15 + all N − 1 + all N − 1 60 exact exact 10 40 5 20 0 n f = 5 ( ∗ 1/160) n f = 5 ( ∗ 1/160) 0 0 5 10 15 20 0 5 10 15 20 N N DIS → SIA → DY : increase of the N 0 terms, N − 1 corrections less important p.9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend