constructions of feebly secure cryptographic primitives
play

Constructions of feebly secure cryptographic primitives Olga - PowerPoint PPT Presentation

Constructions of feebly secure cryptographic primitives Olga Melanich Steklov Institute of Mathematics at St. Petersburg 3.10.2009 1 / 12 Basic definitions Notation B n , m = { f : B n B m } , where B = { 0 , 1 } . 2 / 12 Basic


  1. Constructions of feebly secure cryptographic primitives Olga Melanich Steklov Institute of Mathematics at St. Petersburg 3.10.2009 1 / 12

  2. Basic definitions Notation B n , m = { f : B n → B m } , where B = { 0 , 1 } . 2 / 12

  3. Basic definitions Notation B n , m = { f : B n → B m } , where B = { 0 , 1 } . Definition Circuit complexity of a function f is the smallest number of gates in a circuit computing f (such circuit is called an optimal circuit for f ) C ( f ) = c : ∀ x c ( x )= f ( x ) C ( c ) . min 2 / 12

  4. Basic definitions Notation B n , m = { f : B n → B m } , where B = { 0 , 1 } . Definition Circuit complexity of a function f is the smallest number of gates in a circuit computing f (such circuit is called an optimal circuit for f ) C ( f ) = c : ∀ x c ( x )= f ( x ) C ( c ) . min Definition f n ∈ B n , m , injective. The measure of feeble one-wayness M F ( f n ) = C ( f − 1 ) C ( f n ) . n 2 / 12

  5. Basic definitions Notation B n , m = { f : B n → B m } , where B = { 0 , 1 } . Definition Circuit complexity of a function f is the smallest number of gates in a circuit computing f (such circuit is called an optimal circuit for f ) C ( f ) = c : ∀ x c ( x )= f ( x ) C ( c ) . min Definition f n ∈ B n , m , injective. The measure of feeble one-wayness M F ( f n ) = C ( f − 1 ) C ( f n ) . n Definition { f n } is feebly one-way of order k if lim inf n →∞ C ( f n ) = ∞ and lim inf n →∞ M F ( f n ) = k , with k ∈ ( 1 , ∞ ] . 2 / 12

  6. Hiltgen’s function of order 3/2 f n (( x 1 , ... x n )) = ( y 1 , ... y n ) , where y i = x i ⊕ x i + 1 1 ≤ i < n y i = x 1 ⊕ x ⌈ n / 2 ⌉ ⊕ x n i = n . 3 / 12

  7. Hiltgen’s function of order 3/2 f n (( x 1 , ... x n )) = ( y 1 , ... y n ) , where y i = x i ⊕ x i + 1 1 ≤ i < n y i = x 1 ⊕ x ⌈ n / 2 ⌉ ⊕ x n i = n . f − 1 (( y 1 , ... y n )) = ( x 1 , ... x n ) , n where x i = ( y 1 ⊕ · · · ⊕ y i − 1 ) ⊕ ( y ⌈ n / 2 ⌉ ⊕ · · · ⊕ y n − 1 ) ⊕ y n 1 ≤ i ≤ ⌈ n / 2 ⌉ x i = ( y 1 ⊕ · · · ⊕ y ⌈ n / 2 ⌉− 1 ) ⊕ ( y i ⊕ · · · ⊕ y n − 1 ) ⊕ y n ⌈ n / 2 ⌉ ≤ i ≤ n . 3 / 12

  8. Hiltgen’s function of order 3/2 f n (( x 1 , ... x n )) = ( y 1 , ... y n ) , where y i = x i ⊕ x i + 1 1 ≤ i < n y i = x 1 ⊕ x ⌈ n / 2 ⌉ ⊕ x n i = n . f − 1 (( y 1 , ... y n )) = ( x 1 , ... x n ) , n where x i = ( y 1 ⊕ · · · ⊕ y i − 1 ) ⊕ ( y ⌈ n / 2 ⌉ ⊕ · · · ⊕ y n − 1 ) ⊕ y n 1 ≤ i ≤ ⌈ n / 2 ⌉ x i = ( y 1 ⊕ · · · ⊕ y ⌈ n / 2 ⌉− 1 ) ⊕ ( y i ⊕ · · · ⊕ y n − 1 ) ⊕ y n ⌈ n / 2 ⌉ ≤ i ≤ n . Theorem For all n > 5 , the functions f n satisfy C ( f n ) = n + 1 and C ( f − 1 ) = ⌊ 3 2 ( n − 1 ) ⌋ . n 3 / 12

  9. Hiltgen’s function of order 3/2 f n (( x 1 , ... x n )) = ( y 1 , ... y n ) , where y i = x i ⊕ x i + 1 1 ≤ i < n y i = x 1 ⊕ x ⌈ n / 2 ⌉ ⊕ x n i = n . f − 1 (( y 1 , ... y n )) = ( x 1 , ... x n ) , n where x i = ( y 1 ⊕ · · · ⊕ y i − 1 ) ⊕ ( y ⌈ n / 2 ⌉ ⊕ · · · ⊕ y n − 1 ) ⊕ y n 1 ≤ i ≤ ⌈ n / 2 ⌉ x i = ( y 1 ⊕ · · · ⊕ y ⌈ n / 2 ⌉− 1 ) ⊕ ( y i ⊕ · · · ⊕ y n − 1 ) ⊕ y n ⌈ n / 2 ⌉ ≤ i ≤ n . Theorem For all n > 5 , the functions f n satisfy C ( f n ) = n + 1 and C ( f − 1 ) = ⌊ 3 2 ( n − 1 ) ⌋ . n Corollary { f n } is feebly one-way of order 3 / 2 . 3 / 12

  10. Methods 1 Gate elimination. 2 Lower bounds (Lamagna and Savage). Theorem If f ∈ B n depends non-idly on each of its n variables, then C ( f ) ≥ n − 1 . Theorem Let f = { f ( 0 ) , . . . , f ( m ) } ∈ B n , m . If the m component functions f ( i ) are pairwise different and if they satisfy C ( f ( i ) ) ≥ c ≥ 1 , then C ( f ) ≥ c + m − 1 . 4 / 12

  11. Hiltgen’s function of order 3/2 Proof. 1 C ( f n ) ≤ n + 1. 5 / 12

  12. Hiltgen’s function of order 3/2 Proof. 1 C ( f n ) ≤ n + 1. 2 C ( f n ) ≥ n + 1. 5 / 12

  13. Hiltgen’s function of order 3/2 Proof. 1 C ( f n ) ≤ n + 1. 2 C ( f n ) ≥ n + 1. Consider S 1 = { x 1 , x ⌈ n / 2 ⌉ , x n } , S 2 = { x 1 , . . . , x n } \ S 1 . 1 5 / 12

  14. Hiltgen’s function of order 3/2 Proof. 1 C ( f n ) ≤ n + 1. 2 C ( f n ) ≥ n + 1. Consider S 1 = { x 1 , x ⌈ n / 2 ⌉ , x n } , S 2 = { x 1 , . . . , x n } \ S 1 . 1 Set x i = 0 ∀ x i ∈ S 2 . We eliminate at least n − 1 gates. 2 5 / 12

  15. Hiltgen’s function of order 3/2 Proof. 1 C ( f n ) ≤ n + 1. 2 C ( f n ) ≥ n + 1. Consider S 1 = { x 1 , x ⌈ n / 2 ⌉ , x n } , S 2 = { x 1 , . . . , x n } \ S 1 . 1 Set x i = 0 ∀ x i ∈ S 2 . We eliminate at least n − 1 gates. 2 C ( y n ) = 2. 3 5 / 12

  16. Hiltgen’s function of order 3/2 Proof. 1 C ( f n ) ≤ n + 1. 2 C ( f n ) ≥ n + 1. Consider S 1 = { x 1 , x ⌈ n / 2 ⌉ , x n } , S 2 = { x 1 , . . . , x n } \ S 1 . 1 Set x i = 0 ∀ x i ∈ S 2 . We eliminate at least n − 1 gates. 2 C ( y n ) = 2. 3 3 C ( f − 1 ) = ⌊ 3 2 ( n − 1 ) ⌋ . n 5 / 12

  17. Hiltgen’s function of order 3/2 Proof. 1 C ( f n ) ≤ n + 1. 2 C ( f n ) ≥ n + 1. Consider S 1 = { x 1 , x ⌈ n / 2 ⌉ , x n } , S 2 = { x 1 , . . . , x n } \ S 1 . 1 Set x i = 0 ∀ x i ∈ S 2 . We eliminate at least n − 1 gates. 2 C ( y n ) = 2. 3 3 C ( f − 1 ) = ⌊ 3 2 ( n − 1 ) ⌋ . n C ( x i ) ≥ ⌈ n / 2 ⌉ − 1. 1 5 / 12

  18. Hiltgen’s function of order 3/2 Proof. 1 C ( f n ) ≤ n + 1. 2 C ( f n ) ≥ n + 1. Consider S 1 = { x 1 , x ⌈ n / 2 ⌉ , x n } , S 2 = { x 1 , . . . , x n } \ S 1 . 1 Set x i = 0 ∀ x i ∈ S 2 . We eliminate at least n − 1 gates. 2 C ( y n ) = 2. 3 3 C ( f − 1 ) = ⌊ 3 2 ( n − 1 ) ⌋ . n C ( x i ) ≥ ⌈ n / 2 ⌉ − 1. 1 C ( f − 1 ) ≥ ( ⌈ n / 2 ⌉ − 1 ) + n − 1 = ⌊ 3 2 ( n − 1 ) ⌋ . 2 n 5 / 12

  19. Hiltgen’s function of order 3/2 Proof. 1 C ( f n ) ≤ n + 1. 2 C ( f n ) ≥ n + 1. Consider S 1 = { x 1 , x ⌈ n / 2 ⌉ , x n } , S 2 = { x 1 , . . . , x n } \ S 1 . 1 Set x i = 0 ∀ x i ∈ S 2 . We eliminate at least n − 1 gates. 2 C ( y n ) = 2. 3 3 C ( f − 1 ) = ⌊ 3 2 ( n − 1 ) ⌋ . n C ( x i ) ≥ ⌈ n / 2 ⌉ − 1. 1 C ( f − 1 ) ≥ ( ⌈ n / 2 ⌉ − 1 ) + n − 1 = ⌊ 3 2 ( n − 1 ) ⌋ . 2 n ⇒ C ( f − 1 ) ≤ ⌊ 3 x i = y i ⊕ x i + 1 , i � = n = 2 ( n − 1 ) ⌋ . 3 n 5 / 12

  20. Hiltgen’s function of order 3/2 Proof. 1 C ( f n ) ≤ n + 1. 2 C ( f n ) ≥ n + 1. Consider S 1 = { x 1 , x ⌈ n / 2 ⌉ , x n } , S 2 = { x 1 , . . . , x n } \ S 1 . 1 Set x i = 0 ∀ x i ∈ S 2 . We eliminate at least n − 1 gates. 2 C ( y n ) = 2. 3 3 C ( f − 1 ) = ⌊ 3 2 ( n − 1 ) ⌋ . n C ( x i ) ≥ ⌈ n / 2 ⌉ − 1. 1 C ( f − 1 ) ≥ ( ⌈ n / 2 ⌉ − 1 ) + n − 1 = ⌊ 3 2 ( n − 1 ) ⌋ . 2 n ⇒ C ( f − 1 ) ≤ ⌊ 3 x i = y i ⊕ x i + 1 , i � = n = 2 ( n − 1 ) ⌋ . 3 n Remark Hiltgen improved this family of permutations and got order 2. 5 / 12

  21. Perspectives Linear constructions: ≤ n − 1 gates per one bit of output. f − 1 is also linear. f is linear = ⇒ 6 / 12

  22. Perspectives Linear constructions: ≤ n − 1 gates per one bit of output. f − 1 is also linear. f is linear = ⇒ Nonlinear constructions are necessary! 6 / 12

  23. Non-linear function of order 2 = ( x 1 ⊕ x 2 ) x n ⊕ x n − 1 y 1 y 2 = ( x 1 ⊕ x 2 ) x n ⊕ x 2 y 3 = x 1 ⊕ x 3 = x 3 ⊕ x 4 y 4 · · · y n − 1 = x n − 2 ⊕ x n − 1 = x n y n 7 / 12

  24. Non-linear function of order 2 = ( x 1 ⊕ x 2 ) x n ⊕ x n − 1 y 1 y 2 = ( x 1 ⊕ x 2 ) x n ⊕ x 2 y 3 = x 1 ⊕ x 3 = x 3 ⊕ x 4 y 4 · · · y n − 1 = x n − 2 ⊕ x n − 1 = x n y n x n = y n x 2 = ( y 1 ⊕ . . . ⊕ y n − 1 ) y n ⊕ y 2 x n − 1 = ( y 1 ⊕ . . . ⊕ y n − 1 ) y n ⊕ y 1 x n − 2 = ( y 1 ⊕ . . . ⊕ y n − 1 ) y n ⊕ y 1 ⊕ y n − 1 x n − 3 = ( y 1 ⊕ . . . ⊕ y n − 1 ) y n ⊕ y 1 ⊕ y n − 1 ⊕ y n − 2 · · · x 3 = ( y 1 ⊕ . . . ⊕ y n − 1 ) y n ⊕ y 1 ⊕ y n − 1 ⊕ . . . ⊕ y 4 x 1 = ( y 1 ⊕ . . . ⊕ y n − 1 ) y n ⊕ y 1 ⊕ y n − 1 ⊕ . . . ⊕ y 3 7 / 12

  25. Non-linear function of order 2 Theorem { f n } is feebly one-way of order 2 . 8 / 12

  26. Non-linear function of order 2 Theorem { f n } is feebly one-way of order 2 . Proof. 1 n − 1 ≤ C ( f n ) ≤ n + 1. 8 / 12

  27. Non-linear function of order 2 Theorem { f n } is feebly one-way of order 2 . Proof. 1 n − 1 ≤ C ( f n ) ≤ n + 1. 2 2 n − 3 ≤ C ( f − 1 ) ≤ 2 n − 2. n 8 / 12

  28. Non-linear function of order 2 Theorem { f n } is feebly one-way of order 2 . Proof. 1 n − 1 ≤ C ( f n ) ≤ n + 1. 2 2 n − 3 ≤ C ( f − 1 ) ≤ 2 n − 2. n 2 n − 3 n + 1 ≤ M F ( f n ) ≤ 2 n − 2 n − 1 . 3 8 / 12

  29. Average case complexity Notation C α ( f ) – the minimal size of a circuit that correctly computes a function f ∈ B n , m on more than α n of its inputs ( α ∈ ( 0 , 1 ) ). 9 / 12

  30. Average case complexity Notation C α ( f ) – the minimal size of a circuit that correctly computes a function f ∈ B n , m on more than α n of its inputs ( α ∈ ( 0 , 1 ) ). Theorem C 3 / 4 ( f − 1 ) ≥ 2 n − 4 . n 9 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend