constructions of codes with the locality property
play

Constructions of Codes with the Locality Property Alexander Barg - PowerPoint PPT Presentation

Constructions of Codes with the Locality Property Alexander Barg University of Maryland DIMACS Workshop Network Coding: The Next 15 years A. Barg (UMD) LRC codes 1 / 30 Acknowledgment Based on joint works with Itzhak Tamo Alexey


  1. Constructions of Codes with the Locality Property Alexander Barg University of Maryland DIMACS Workshop “Network Coding: The Next 15 years” A. Barg (UMD) LRC codes 1 / 30

  2. Acknowledgment Based on joint works with Itzhak Tamo Alexey Frolov Serge Vl˘ adut ¸ Sreechakra Goparaju Robert Calderbank A. Barg (UMD) LRC codes 2 / 30

  3. Definitions Locally recoverable codes Table of codewords ������ ������ ������ ������ a The code C ⊂ F n is locally recoverable ������ ������ with locality r if every symbol can be b recovered by accessing some other r symbols in the encoding (recovery set of coordinate i ) i J i A. Barg (UMD) LRC codes 3 / 30

  4. Definitions ( n , k , r ) LRC code Definition (LRC codes) Code C has locality r if for every i ∈ [ n ] there exists a subset J i ⊂ [ n ] \ i , | J i | ≤ r and a function φ i such that for every codeword c ∈ C c i = φ i ( { c j , j ∈ J i } ) J. Han and L. Lastras-Montano, ISIT 2007; C. Huang, M. Chen, and J. Li, Symp. Networks App. 2007; F . Oggier and A. Datta ’10; P . Gopalan, C. Huang, H. Simitci, and S. Yekhanin, IEEE Trans. Inf. Theory, Nov. 2012. Linear index codes are duals of linear DS codes on graphs (Mazumdar ’14; Shanmugam-Dimakis ’14) A. Barg (UMD) LRC codes 4 / 30

  5. Definitions ( n , k , r ) LRC code Definition (LRC codes) Code C has locality r if for every i ∈ [ n ] there exists a subset J i ⊂ [ n ] \ i , | J i | ≤ r and a function φ i such that for every codeword c ∈ C c i = φ i ( { c j , j ∈ J i } ) Examples: Repetition codes, Single parity-check codes [ n , r , n − r + 1 ] RS code Early constructions: Prasanth, Kamath, Lalitha, Kumar , ISIT 2012 Silberstein, Rawat, Koyluoglu Vishwanath , ISIT 2013 Tamo, Papailiopoulos, Dimakis , ISIT 2013 A. Barg (UMD) LRC codes 5 / 30

  6. Outline RS-like LRC codes Bounds on LRC codes LRC codes on curves Cyclic LRC codes A. Barg (UMD) LRC codes 6 / 30

  7. RS-like LRC codes RS codes and Evaluation codes Given a polynomial f ∈ F q [ x ] and a set A = { P 1 , . . . , P n } ⊂ F q define the map ev A : f �→ ( f ( P i ) , i = 1 , . . . , n ) Example: Let q = 8 , f ( x ) = 1 + α x + α x 2 f ( x ) �→ ( 1 , α 4 , α 6 , α 4 , α, α, α 6 ) Evaluation code C ( A ) Let V = { f ∈ F q [ x ] } be a set of polynomials, dim ( V ) = k C : V → F n q f �→ ev A ( f ) = ( f ( P i ) , i = 1 , . . . , n ) A. Barg (UMD) LRC codes 7 / 30

  8. RS-like LRC codes Reed-Solomon codes A. Barg (UMD) LRC codes 8 / 30

  9. RS-like LRC codes Reed-Solomon codes � � � � � � � � � � � � � � A. Barg (UMD) LRC codes 9 / 30

  10. RS-like LRC codes Reed-Solomon codes � � � � � � � � � � � � � � � A. Barg (UMD) LRC codes 10 / 30

  11. RS-like LRC codes Evaluation codes with locality � � � � � � � � � � � � � � � A. Barg (UMD) LRC codes 11 / 30

  12. RS-like LRC codes Construction of ( n , k , r ) LRC codes: Example Parameters: n = 9 , k = 4 , r = 2 , q = 13 ; Set of points: A = { P 1 , . . . , P 9 } ⊂ F 13 A = { A 1 = ( 1 , 3 , 9 ) , A 2 = ( 2 , 6 , 5 ) , A 3 = ( 4 , 12 , 10 ) } Set of functions: P = { f a ( x ) = a 0 + a 1 x + a 3 x 3 + a 4 x 4 } Code construction: ev A : f a �→ ( f ( P i ) , i = 1 , . . . 9 ) E.g., a = ( 1111 ) then f a ( x ) = 1 + x + x 3 + x 4 c := ev A ( f a ) = ( 4 , 8 , 7 | 1 , 11 , 2 | 0 , 0 , 0 ) � �� � � �� � � �� � A 1 A 2 A 3 f a ( x ) | A 1 = a 0 + a 3 + ( a 1 + a 4 ) x = 2 + 2 x f a ( x ) | A 2 = a 0 + 8 a 3 + ( a 1 + 8 a 4 ) x A. Barg (UMD) LRC codes 12 / 30

  13. RS-like LRC codes Construction of ( n , k , r ) LRC codes A = ( P 1 , . . . , P n ) ⊂ F q A = A 1 ∪ A 2 ∪ · · · ∪ A n r + 1 r + 1 (above g ( x ) = x 3 ) n Basis of functions: Take g ( x ) constant on A i , i = 1 , . . . , ⟨ g ( x ) j x i , i = 0 , . . . , r − 1 ; j = 0 , . . . , k ⟩ V = r − 1 ; dim ( V ) = k   k r − 1 r − 1   ∑ ∑ a ij g ( x ) j x i V =  f a ( x ) =  i = 0 j = 0 We obtain a family of optimal r -LRC codes Erasure recovery by polynomial interpolation over r points. I. Tamo and A.B. , IEEE Trans. Inf. Theory, Aug. 2014. A. Barg (UMD) LRC codes 13 / 30

  14. RS-like LRC codes Extensions Codes with multiple disjoint recovery sets for every coordinate Codes that recover locally from ρ ≥ 2 erasures: The local codes are [ r + ρ − 1 , r , ρ ] MDS Systematic encoding A. Barg (UMD) LRC codes 14 / 30

  15. Bounds Finite-length bounds Let C ⊂ F n q be an r -LRC code, |C| = q k , distance d ⌈ k ⌉ d ≤ n − k − + 2 r ( P . Gopalan e.a. 2012) k ≤ min s ≥ 1 { sr + k q ( n − s ( r + 1 ) , d ) } ( V. Cadambe and A. Mazumdar , 2013-15) Bounds for multiple recovery sets (work with I. Tamo, 2014) A. Barg (UMD) LRC codes 15 / 30

  16. Bounds Asymptotic bounds R 0.7 0.6 S i 0.5 n g l Plotkin bound e t o n 0.4 b o u n d 0.3 0.2 LP bound 0.1 GV bound 1.0 ∆ 0.2 0.4 0.6 0.8 Binary codes, r = 3; n → ∞ R q ( r , δ ) > 0 , 0 ≤ δ < ( q − 1 ) / q r q − 1 R q ( r , 0 ) = r + 1 , R q ( r , δ ) = 0 , ≤ δ ≤ 1 q A. Barg (UMD) LRC codes 16 / 30

  17. Codes on curves Geometric view of LRC codes A = { 1 , . . . , 9 } ⊂ F 13 A = A 1 ∪ A 2 ∪ A 3 A 1 = ( 1 , 3 , 9 ) A 2 = ( 2 , 6 , 5 ) A 3 = ( 4 , 12 , 10 ) g : A → F 13 x �→ x 3 − 1 g : F 13 → { 0 , 7 , 8 } ⊂ F 13 | g − 1 ( y ) | = r + 1 A. Barg (UMD) LRC codes 17 / 30

  18. Codes on curves LRC codes on curves Consider the set of pairs ( x , y ) ∈ F 9 that satisfy the equation x 3 + x = y 4 α 7 • • • • α 6 • α 5 • • • • α 4 • • • • x α 3 • • • • α 2 • α • • • • 1 • • • • 0 • 0 1 α α 2 α 3 α 4 α 5 α 6 α 7 y Affine points of the Hermitian curve X over F 9 ; α 2 = α + 1 A. Barg (UMD) LRC codes 18 / 30

  19. Codes on curves Hermitian codes P 1 g : X → ( x , y ) �→ y Space of functions V := ⟨ 1 , y , y 2 , x , xy , xy 2 ⟩ A= { Affine points of the Hermitian curve over F 9 } ; n = 27 , k = 6 C : V → F n 9 E.g., message ( 1 , α, α 2 , α 3 , α 4 , α 5 ) F ( x , y ) = 1 + α y + α 2 y 2 + α 3 x + α 4 xy + α 5 xy 2 F ( 0 , 0 ) = 1 etc. A. Barg (UMD) LRC codes 19 / 30

  20. Codes on curves LRC codes on curves α 7 α 7 α 5 α 0 α 6 α 2 α 5 α 6 α 4 α 2 0 α 4 α 7 α 3 α 5 α 5 x α 3 α 3 α 7 α α α 2 α 3 α 0 0 0 0 α 6 α 4 1 1 0 0 1 α α 2 α 3 α 4 α 5 α 6 α 7 0 1 y A. Barg (UMD) LRC codes 20 / 30

  21. Codes on curves Hermitian LRC codes α 7 α 7 α 5 α 0 α 6 α 2 α 5 α 6 α 4 α 2 0 α 4 α 7 α 3 α 5 α 5 x α 3 α 3 α 7 α α α 2 α 3 X α 0 0 0 0 α 6 α 4 1 1 0 0 1 α α 2 α 3 α 4 α 5 α 6 α 7 0 1 y Let P = ( α, 1 ) be the erased location. A. Barg (UMD) LRC codes 21 / 30

  22. Codes on curves Local recovery with Hermitian codes α 7 α 7 α 5 α 0 α 6 α 2 α 5 α 6 α 4 α 2 0 α 4 α 7 α 3 α 5 α 5 x α 3 α 3 α 7 α α α 2 α 3 α ? 0 0 0 α 6 α 4 1 1 0 0 1 α α 2 α 3 α 4 α 5 α 6 α 7 0 1 y Let P = ( α, 1 ) be the erased location. Recovery set I P = { ( α 4 , 1 ) , ( α 3 , 1 ) } Find f ( x ) : f ( α 4 ) = α 7 , f ( α 3 ) = α 3 f ( x ) = α x − α 2 ⇒ f ( α ) = 0 = F ( P ) A. Barg (UMD) LRC codes 22 / 30

  23. Codes on curves Hermitian codes q = q 2 0 , q 0 prime power X : x q 0 + x = y q 0 + 1 0 = q 3 / 2 points in F q X has q 3 Let g : X → Y = P 1 , g ( P ) = g ( x , y ) := y We obtain a family of q -ary codes of length n = q 3 0 , k = ( t + 1 )( q 0 − 1 ) , d ≥ n − tq 0 − ( q 0 − 2 )( q 0 + 1 ) with locality r = q 0 − 1 . It is also possible to take g ( P ) = x (projection on x ); we obtain LRC codes with locality q 0 A. Barg (UMD) LRC codes 23 / 30

  24. Codes on curves General construction Map of curves X , Y smooth projective absolutely irreducible curves over k g : X → Y rational separable map of degree r + 1 Lift the points of Y S = { P 1 , . . . , P s } ⊂ Y ( k ) . Partition of points: A := g − 1 ( S ) = { P ij , i = 0 , . . . , r , j = 1 , . . . , s } ⊆ X ( k ) such that g ( P ij ) = P j for all i , j Basis of the function space: Q ∞ = π − 1 ( ∞ ) , where π : Y → P 1 k { f 1 , . . . , f m } span L ( tQ ∞ ) , t ≥ 1 { f j x i , i = 0 , . . . , r − 1 ; j = 1 , . . . , m } Construct LRC codes Evaluation codes constructed on the set A are LRC codes with locality r A. Barg (UMD) LRC codes 24 / 30

  25. Asymptotically good codes Asymptotically good sequences of codes Let q = q 2 0 , where q 0 is a prime power. Take Garcia-Stichtenoth towers of curves: x 0 := 1 ; X 1 := P 1 , k ( X 1 ) = k ( x 1 ); l − 1 , x l − 1 := z l − 1 X l : z q 0 + z l = x q 0 + 1 ∈ k ( X l − 1 ) (if l ≥ 3 ) l x l − 2 There exist families of q -ary LRC codes with locality r whose rate and relative dis- tance satisfy r ( 3 ) r = √ q − 1 R ≥ 1 − δ − √ q + 1 , r + 1 1 − δ − 2 √ q ( ) r = √ q r R ≥ , r + 1 q − 1 ∗ ) Recall the TVZ bound without locality: R ≥ 1 − δ − 1 √ q − 1 A. Barg (UMD) LRC codes 25 / 30

  26. Asymptotically good codes LRC codes on curves better than the GV bound R 0.8 � 0.6 LRC codes 0.4 on curves LRC GV bound 0.2 1.0 ∆ 0.2 0.4 0.6 0.8 A. Barg (UMD) LRC codes 26 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend