connections between learning with errors and the dihedral
play

Connections between Learning with Errors and the Dihedral Coset - PowerPoint PPT Presentation

Connections between Learning with Errors and the Dihedral Coset Problem Elena Kirshanova joint work with Zvika Brakerski, Damien Stehl, and Weiqiang Wen LWE and DCP Dimension: n , modulus: q = poly( n ) LWE: Given ( a 1 , a 1 , s + e


  1. Connections between Learning with Errors and the Dihedral Coset Problem Elena Kirshanova joint work with Zvika Brakerski, Damien Stehlé, and Weiqiang Wen

  2. LWE and DCP Dimension: n , modulus: q = poly( n ) LWE: Given ( a 1 , � a 1 , s � + e 1 mod q ) . . . ( a m , � a m , s � + e m mod q ) with � e � ≪ q , find s .

  3. LWE and DCP Dimension: n , modulus: q = poly( n ) LWE: Given DCP: Given ( a 1 , � a 1 , s � + e 1 mod q ) | 0 , x 1 � + | 1 , x 1 + s mod N � . . . . . . ( a m , � a m , s � + e m mod q ) | 0 , x ℓ � + | 1 , x ℓ + s mod N � with � e � ≪ q , find s . find s .

  4. LWE and DCP Dimension: n , modulus: q = poly( n ) LWE: Given ≤ DCP: Given [Regev’02] ( a 1 , � a 1 , s � + e 1 mod q ) | 0 , x 1 � + | 1 , x 1 + s mod N � . . . . . . ( a m , � a m , s � + e m mod q ) | 0 , x ℓ � + | 1 , x ℓ + s mod N � with � e � ≪ q , find s . find s .

  5. LWE and DCP Dimension: n , modulus: q = poly( n ) LWE: Given ≤ DCP: Given [Regev’02] ( a 1 , � a 1 , s � + e 1 mod q ) | 0 , x 1 � + | 1 , x 1 + s mod N � . . . . . . ( a m , � a m , s � + e m mod q ) | 0 , x ℓ � + | 1 , x ℓ + s mod N � with � e � ≪ q , find s . find s . Does not improve upon classical algorithms

  6. LWE and DCP Dimension: n , modulus: q = poly( n ) LWE: Given ≤ DCP: Given [Regev’02] ( a 1 , � a 1 , s � + e 1 mod q ) | 0 , x 1 � + | 1 , x 1 + s mod N � . . . . . . ( a m , � a m , s � + e m mod q ) | 0 , x ℓ � + | 1 , x ℓ + s mod N � with � e � ≪ q , find s . find s . Does not improve upon classical algorithms BKW / lattices: Kuperberg: � � log q 2 O (log ℓ +log N/ log ℓ ) O n · (log q − log ei )2 2 The reduction produces ℓ = poly( n ) , N = 2 n 2

  7. Inverse direction Is DCP ≤ LWE? ◮ might give a strong evidence for quantum hardness of LWE ◮ DCP might be too ‘hard’ for LWE: DCP ≤ SubsetSum 1 · c [Reg’02], but SubsetSum log n ≤ LWE ≤ Vec. SubsetSum > log n 1

  8. Inverse direction Is DCP ≤ LWE? ◮ might give a strong evidence for quantum hardness of LWE ◮ DCP might be too ‘hard’ for LWE: DCP ≤ SubsetSum 1 · c [Reg’02], but SubsetSum log n ≤ LWE ≤ Vec. SubsetSum > log n 1 No, but we show that EDCP ≤ LWE

  9. Extended DCP EDCP DCP for a distr. D � D ( j ) | j � | x + j · s � | 0 � | x � + | 1 � | x + s � j ∈ sup ( D )

  10. Extended DCP EDCP DCP for a distr. D � D ( j ) | j � | x + j · s � | 0 � | x � + | 1 � | x + s � j ∈ sup ( D ) G - EDCP U - EDCP � M − 1 � ρ r ( j ) | j � | x + j · s � j =0 | j � | x + j · s � j ∈ Z

  11. Extended DCP EDCP DCP for a distr. D � D ( j ) | j � | x + j · s � | 0 � | x � + | 1 � | x + s � j ∈ sup ( D ) G - EDCP U - EDCP � M − 1 � ρ r ( j ) | j � | x + j · s � j =0 | j � | x + j · s � j ∈ Z Main result: LWE G - EDCP U - EDCP < DCP ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ hides polynomial loses

  12. Extended DCP EDCP DCP for a distr. D � D ( j ) | j � | x + j · s � | 0 � | x � + | 1 � | x + s � j ∈ sup ( D ) G - EDCP n,q,r U - EDCP n,q,M � M − 1 � ρ r ( j ) | j � | x + j · s � j =0 | j � | x + j · s � j ∈ Z LWE n,q, G - EDCP n,q,r U - EDCP n,q,c · r q DCP 2 n log q r · poly( n ) Dimension modulus st. dev. G - EDCP n,q,r/ √ n LWE n,q,q/r

  13. Extended DCP EDCP DCP for a distr. D � D ( j ) | j � | x + j · s � | 0 � | x � + | 1 � | x + s � j ∈ sup ( D ) G - EDCP n,q,r U - EDCP n,q,M � M − 1 � ρ r ( j ) | j � | x + j · s � j =0 | j � | x + j · s � j ∈ Z Quantum rejection sampling, Ozols et al. LWE n,q, G - EDCP n,q,r U - EDCP n,q,c · r q DCP 2 n log q r · poly( n ) Dimension modulus st. dev. G - EDCP n,q,r/ √ n LWE n,q,q/r

  14. Results via average case lattice problems [Reg02]+[LM09] LWE n,q, DCP 2 n log q [2 n 2 ] q G - EDCP n,q,r U - EDCP n,q,c · r r · poly( n )

  15. Results via average case lattice problems [Reg02]+[LM09] LWE n,q, DCP 2 n log q [2 n 2 ] q G - EDCP n,q,r U - EDCP n,q,c · r r · poly( n ) 1 -dim UDCP was already considered in [Childs-van Dam’07]: M − 1 � | j � | x + j · s mod 2 n � j =0 √ n 2 n/c 2 2 M Runtime 2 n poly( n ) poly( n ) [CvD’07] [Brakerski et. al] LWE √ n, 2 LWE 1 , 2 n , 2 n √ n G - EDCP 1 , 2 n ,M U - EDCP 1 , 2 n ,M √ n , 2 M M

  16. G-EDCP ≤ LWE � � e � |� a , s � + e � ρ 1 QFT q r e ∈ Z q QFT a � ρ r ( j ) | j � | x + j · s mod q � j ∈ Z (1) (2)

  17. G-EDCP ≤ LWE � � e � |� a , s � + e � ρ 1 QFT q r e ∈ Z q QFT a � ρ r ( j ) | j � | x + j · s mod q � j ∈ Z (1) (2) � � ω � ( x + j · s ) , a � (1) : · ρ r ( j ) | j � | a � q a ∈ Z n j ∈ Z q

  18. G-EDCP ≤ LWE � � e � |� a , s � + e � ρ 1 QFT q r e ∈ Z q QFT a � ρ r ( j ) | j � | x + j · s mod q � j ∈ Z (1) (2) � � ω � ( x + j · s ) , a � (1) : · ρ r ( j ) | j � | a � q a ∈ Z n j ∈ Z q j + � a , s � + b � � � � PSF � � ω j · ( � a , s � + b ) (2) : · ρ r ( j ) | b � − − → ρ 1 /r | b � q q b ∈ Z q j ∈ Z b ∈ Z q j ∈ Z

  19. Open questions ◮ how to make use of several shifts (exact complexity of Kuperberg’s algorithm with multiple shifts). ◮ trade samples vs. shifts: UDCP self-reduction allowing to trade ℓ for M ? ◮ extend quantum rejection sampling to ring-lwe states

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend