composite dark matter
play

Composite Dark Matter Part DM theory Interest Craziness 1 SM - PowerPoint PPT Presentation

Composite Dark Matter Part DM theory Interest Craziness 1 SM !!! ??? 2 SM + heavy Q !! ?? 3 SM + heavy Q + new force ! ? Alessandro Strumia, Pisa U. & INFN & CERN From works with Antipin, deLuca, Mitridate, Redi, Smirnov,


  1. Composite Dark Matter Part DM theory Interest Craziness 1 SM !!! ??? 2 SM + heavy Q !! ?? 3 SM + heavy Q + new force ! ? Alessandro Strumia, Pisa U. & INFN & CERN From works with Antipin, deLuca, Mitridate, Redi, Smirnov, Vigiani. KEK-PH2018, 2018.2.14

  2. 1) DM within the SM??? Jaffe: the spin 0 iso-singlet di-baryon S = uuddss should have a large binding. Farrar: it could be stable DM if E B > ∼ 2 m s such that M S < 2( M p + M e ).

  3. Thermal abundance Interactions with strange hadrons (e.g. ΛΛ ↔ S X ) keep S in thermal equilibrium until Λ get Boltzmann suppressed at T ∼ M Λ − M p : Ω S ∼ 5Ω b for M S ≈ 1 . 3 GeV: 1.0 X c = 0.88 0.8 S baryon fraction from QCD 0.6 σ = 0.1 GeV - 2 σ = GeV - 2 σ = 10 GeV - 2 0.4 0.2 0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Exaplet mass m S in GeV

  4. Nuclear decay If stable, S makes nuclei unstable. Excluded by SuperKamiokande n π 0 τ (O → S X ) > 10 26 − 29 yr Λ ∗ where X = { ππ, π, e, γ } . The decay dominantly proceeds trough double S β production of virtual Λ ∗ . Λ ∗ p Recent fits of nucleon potentials and O wave-function imply a too π + fast decay. Excluded also by balloon direct detection, unless interactions reduce S speed.

  5. 2) Colored DM?? Uh? Everybody knows it’s excluded

  6. Theory L = L SM + ¯ Q ( i / D − M Q ) Q . Q is a new colored particle. We assume a Dirac fermion octet with no weak interactions, no asymmetry. (Alternatives: a color triplet, a (3 , 2), a scalar...). Could be a Dirac gluino; could be a fermion of natural KSVZ axion models. Ω Q h 2 ∼ 0 . 1 M Q / 7 TeV before confinement. Later hadrons form: • DM can be the Q -onlyum hadron QQ . It is the ground state: big binding E B ∼ α 2 3 M Q ∼ 200 GeV and small radius a ∼ 1 /α 3 M Q , so small interactions. q ′ have small E B ∼ Λ QCD and large σ ∼ 1 / Λ 2 • Hybrids Q g and/or Q q ¯ QCD . Excluded, unless their relic abundance is small. Hybrids have zero relic abundance, if cosmology has infinite time to thermalise. A hybrid recombines M Pl / Λ QCD ∼ 10 19 times in a Hubble time. Hadronizing with q, g is more likely, n q,g ∼ 10 14 n Q . Result: n hybrid ∼ 10 − 5 n DM .

  7. Cosmological evolution ����������� � �� ��� �� � �� � �� � �� � �� - � �� - � �� - � ������ ���������� � = � / � �� � ���������� ������������ ���������� ���� ��������� Ω � � �  �� - �� �� � �� - �� �� - � �� - �� �� - � �  = ��� ��� �� - �� �� - � �  � σ ��� = � π / Λ ��� �� - �� �� - �� α ��� = � �� - �� �� � �� � �� � �� � �� � �� � � = �  / � 1) Usual decoupling at T ∼ M Q / 25, Sommerfeld and bound states included. ∼ Λ QCD because σ bound ∼ 1 /T 2 . 2) Recoupling at T > 3) Hadronization at T ∼ Λ QCD and ‘fall’: half QQ , half Q ¯ Q → gg, q ¯ q . 4) Redecoupling at T ∼ Λ QCD / 40 determines Ω QQ ≈ Ω Q / 2, Ω hybrid ∼ 10 − 5 Ω QQ .

  8. Fall cross section After formation, a QQ can break or fall to an unbreakable (deep enough) level. σ QCD ∼ 1 / Λ 2 QCD ≫ σ pert ∼ α 2 3 /M 2 Q because � � = ��� ��� constituents have large ℓ = M Q vb where b ��� � σ ��� = � π / Λ ��� is the classical impact parameter ���� ����� ������� �� � / ��� � ��� � σ = π / Λ ℓ 2 � � � � � � σ ∼ b 2 ∼ �� . � σ � = / Λ � � � � KM Q � � �� α ��� = �� α ��� = �� QQ becomes unbreakable when it radiates α ��� = ��� � ∆ E > ∼ T before the next collision after � � Λ 2 QCD /T 3 1 T > M π ��� ∆ t ∼ ∼ ���� ���� ��� ��� e M π /T / Λ QCD n π v π σ QCD T < M π ����������� �� ��� The radiated energy is classical for n, ℓ ≫ 1 and minimal for circular orbits: ∆ t = � W Larmor � ≃ 2 α 7 µ 2 3 − ( ℓ/n ) 2 ∆ E × for abelian hydrogen. 3 n 8 2( ℓ/n ) 5 � �� � � �� � circular elliptic enhancement Non perturbative α 3 : could emit 100 g with E ∼ GeV in one shot.

  9. Relic abundances �� � �� - �� �  ������������ Ω �� � � �� - � �� - �� Ω  � � � �� �  �� - � ������ ������� � = � / � �� - �� �� - � ���������� Ω � � ����� ������� �  ������������ �� - �� �� - � Ω  � � �� - � �� - �� �� - � � � � � � � � � � � � � � � � � � �� - �� �� - � �� - �� �  �� - � �� - � �� - �� � �� �� ��� � � � �� �� �� �� ��� �  �� ��� �  �� ���

  10. Direct detection of DM Interaction QQ /gluon analogous to Rayleigh interaction hydrogen/light: E a 2 . BB � L eff = c E M DM ¯ Polarizability coefficient estimated as c E ∼ 4 πa 3 in terms of the Bohr-like radius a = 2 / (3 α 3 M Q ). Actual computation gives a bit smaller 1 r | B � = (0 . 36 bound + 1 . 17 free ) πa 3 c E = πα 3 � B | � r � H 8 − E 10 so that the spin-independent cross section is below bounds � 6 � � 8 � � � 2 20 TeV 0 . 1 c E σ SI ≈ 2 . 3 10 − 45 cm 2 × . 1 . 5 πa 3 M DM α 3

  11. ������ ��������� �������� ��������� �� - �� �� - �� �������� �� �������� �� ������� ����� ����� ��������� �� ������������� ���� - ����������� σ �� �� �� � �� - �� �� - �� σ ��� � ��� �� �� � / � ������� �� ���� ������� �� ���� �� - �� � �� - �� � � � � � � � � �������� σ ��� � ��� �� - �� �� - �� � �� �� ��� � �� �� ��� �� ���� � �� �� ��� �� ���� � �� �� ���

  12. Indirect detection of DM H ) ≫ α 2 /m 2 Analogous to hydrogen: σ ( H ¯ e has atomic size, because enhanced and dominated p ) → ( e ¯ p ) → · · · . by recombination ( ep )+(¯ e ¯ e )+( p ¯ DM annihilation dominated by ( QQ ) + ( ¯ Q ¯ Q ) → ( Q ¯ Q ) + ( Q ¯ Q ) . Classical result: σ ann ∼ πa 2 , enhanced by dipole Sommerfeld. Quantum estimate √ � 2 � � σ ann v rel ∼ πa 2 v rel / 2 = 1 . 5 10 − 24 cm 3 � 2 π 20 TeV 0 . 1 = sec × . � 3 M 2 Q α 3 M DM α 3 E kin /E B

  13. Collider detection of Q QCD pair production, pp → Q ¯ Q , two stable hadron tracks, possibly charged. LHC: M Q > 2 TeV. pp collider at √ s > ∼ 65 TeV needed to discover M Q ∼ 9 . 5 TeV. Low σ at a muon collider.

  14. q ′ Hybrids Q g , Q q ¯ Strongly Interacting Massive Particles with big σ ∼ σ QCD don’t reach under- ground detectors. Excluded by balloons and over-heating if Ω SIMP = Ω DM . Ω SIMP ∼ 10 − 5 Ω DM is allowed SIMP searches in nuclei : best bounds:  3 10 − 14 Oxygen in Earth     10 − 16 N SIMP Enriched C in Earth  for M SIMP ∼ 10 TeV < 10 − 12 Iron in Earth N n    4 10 − 14  Meteorites  The predicted primordial cosmological average is N SIMP /N n ∼ 5 10 − 9 . Difficult to predict abundance in Earth nuclei. Rough result: Our SIMPs allowed if don’t bind to nuclei, borderline otherwise . q ′ , that thereby decay. Similarly for QQ g , Q qqq . Q g presumably lighter than Q q ¯ Q g is iso-spin singlet: π a cannot mediate long-range nuclear forces. Heavier mesons mediate short-range forces, not computable from 1st principles. If attractive Q g can bind to big nuclei, A ≫ 1. If repulsive Q g remains free. In any case, SIMPs sank in the primordial (fluid) Earth and stars .

  15. Secondary hybrids SIMPs that hit the Earth get captured and thermalise in the upper atmosphere. Accumulated mass = M = ρ SIMP v rel πR 2 E ∆ t ∼ 25 Mton ∼ 10 4 × (fossile energy) . � N SIMP � = M m N ≈ 4 10 − 19 , where are SIMPs now? Average density = N n M Q M Earth Earth • If SIMPs do not bind to nuclei: SIMPs sink with v thermal ≈ 40 m / s, v drift ≈ 0 . 2 km / yr and δh ∼ 25 m. Density in the crust: N SIMP /N n ∼ 10 − 23 . Rutherford back-scattering? • If SIMPs bind to nuclei: BBN could make hybrid He; collisions in the Earth atmosphere could make hybrid N, O, He kept in the crust kept by electromagnetic binding. Meteorites are byproducts of stellar explosions: do not contain primordial SIMPs; accumulate secondary SIMPs only if captured by nuclei � N SIMP = ρ SIMP σ capture � σ capture v rel ∆ t ≈ 7 10 − 15 . � 0 . 01 / Λ 2 N n � meteorite M Q QCD

  16. 3) DM composite under a new force

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend