complexity of the creative telescoping for bivariate
play

Complexity of the Creative Telescoping for Bivariate Rational - PowerPoint PPT Presentation

1 / 29 Complexity of the Creative Telescoping for Bivariate Rational Functions Shaoshi Chen (joint work with Alin Bostan, Fr ed eric Chyzak & Ziming Li) Algorithms Project-Team, INRIA (France) KLMM, Chinese Academy of Sciences


  1. 1 / 29 Complexity of the Creative Telescoping for Bivariate Rational Functions Shaoshi Chen (joint work with Alin Bostan, Fr´ ed´ eric Chyzak & Ziming Li) Algorithms Project-Team, INRIA (France) KLMM, Chinese Academy of Sciences (China) February 24, 2010 Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  2. 2 / 29 Symbolic integration From differential algebra to creative telescoping → Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  3. 3 / 29 Outline Introduction Minimal telescopers Hermite reduction approach Almkvist and Zeilberger’s approach Non-minimal telescopers Implementation and Application Conclusion Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  4. Introduction 4 / 29 Introduction Minimal telescopers Hermite reduction approach Almkvist and Zeilberger’s approach Non-minimal telescopers Implementation and Application Conclusion Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  5. Introduction 5 / 29 Definite integration for special functions Definite Integration: Creative telescoping (CT): � b by − → L ( x , D x )( f ) = D y ( g ) F ( x ) = f ( x , y ) dy a L : telescoper g : certificate y → a g ( x , y ) = lim lim y → b g ( x , y ) = ⇒ L ( x , D x )( F ) = 0 . Example: An integral of a product of four Bessel functions [GlaMon1994] � + ∞ yJ 1 ( xy ) I 1 ( xy ) Y 0 ( y ) K 0 ( y ) dy = − ln(1 − x 4 ) 2 π x 2 0 L = x 3 ( x 4 − 1) D 4 x + · · · and g = poly. in Bessel functions Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  6. Introduction 6 / 29 Previous works: General special functions � P ( x , y , D x )( f ) = 0 + Ini. cond. = D -finite data structure Q ( x , y , D y )( f ) = 0 Existence: If f is D -finite, then there exists ( L , g ) s.t. L ( f ) = D y ( g ). ◮ Holonomic D-modules: Bernstein (1971) ◮ Closure property of diagonal operation: Lipshitz (1988) Algorithms and implementations: ◮ Slow algo. for general holonomic inputs: Zeilberger (1990) ◮ Fast algo. for hyperexponential inputs: AlmkvistZeilberger (1990) ◮ Gr¨ obner-bases approach: Takayama (1992) ◮ Fast algo. for general holonomic inputs: Chyzak (1997) ◮ Non-holonomic generalization: Chyzak-Kauers-Salvy (2009) ◮ Mgfun (Chyzak1997, Pech2010), HolonomicFunctions (Koutschan2009) Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  7. Introduction 7 / 29 Motivation for our work 1. No complexity analysis for CT algorithms yet 2. Algorithms for special functions are often slow in practice 3. Interesting applications of rational-function telescoping 3.1 Differential equations for algebraic functions [BCLSS2007] � yD y ( P ) � P ( x , α ) = 0 → L = D y ( g ) ⇒ L ( α ) = 0 P 3.2 Differential equations for diagonals [PemantleWilson2008] � f ( y , x / y ) � L = D y ( g ) ⇒ L (diag( f )) = 0 y Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  8. Introduction 8 / 29 Our work: Bivariate rational functions Problem (CT for bivariate rational functions) f ∈ k ( x , y ) , construct ( L , g ) ∈ k ( x ) � D x � \ { 0 } × k ( x , y ) such that L ( x , D x )( f ) = D y ( g ) (Telescoping equation) Example: An integral of a bivariate rational function � + ∞ dy � xy � x + ( x 2 + 1) D x , − F ( x ) := x 2 + y 2 + 1 → ( L , g ) = x 2 + y 2 + 1 0 xF + ( x 2 + 1) D x ( F ) = 0 and F (0) = π π 2 → F ( x ) = √ . x 2 + 1 2 Focus: Compute a telescoper of minimal order (minimal telescoper). Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  9. Introduction 9 / 29 Main results Theorem (Complexity for rational-function telescoping) CT for bivariate rational functions has polynomial complexity. f = P Q ∈ k ( x , y ) → L ( x , D x )( f ) = D y ( g ) d : The max. of total degrees of P and Q in x and y . ω : Any feasible exponent of matrix multiplication (2 ≤ ω ≤ 3). Method deg x ( L ) deg D x ( L ) deg x ( g ) deg y ( g ) Cost Expon. ˜ O ( d 3 ) O ( d 3 ) O ( d 2 ) O ( d ω +4 ) Minimal Hermite ≤ d 6.80 ˜ O ( d 3 ) O ( d 3 ) O ( d 2 ) O ( d 2 ω +3 ) Telescoper RatAZ ≤ d 8.61 O ( d 2 ) O ( d 2 ) O ( d 3 ) O ( d 3 ) O ( d 6 ω ) Non-mini. Lipshitz 16.8 O ( d 2 ) O ( d 2 ) O ( d 2 ) O ( d 4 ω ) Telescoper Cubic O ( d ) 11.2 (Complexity is in terms of arithmetic operations in k ) Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  10. Introduction 10 / 29 Linear systems in different methods Non-linear problem: L ( f ) = D y ( g ) − → Linear problem: M · x = 0 Method System size Coeff. deg. Cost ˜ O ( id 2 ) O ( d ω +4 ) Minimal Hermite i × d ˜ O ( d 2 ω +3 ) Telescoper RatAZ id × id O ( id ) O ( d 6 ) × O ( d 6 ) O ( d 6 ω ) Non-mini. Lipshitz 0 O ( d 4 ) × O ( d 4 ) O ( d 4 ω ) Telescoper Cubic 0 (For mini. telescoper, costs take account of a loop over i = 1 , . . . , d ) Theorem (StorjohannVillard2005) Given M ∈ k [ x ] m × n ≤ d , its rank and a basis of its null space can be computed using ˜ ˜ O ( nmr ω − 2 d ) ops. O ( n ω d ) Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  11. Minimal telescopers 11 / 29 Introduction Minimal telescopers Hermite reduction approach Almkvist and Zeilberger’s approach Non-minimal telescopers Implementation and Application Conclusion Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  12. Minimal telescopers 12 / 29 Two approaches for constructing minimal telescopers Aim: Given f = P / Q ∈ k ( x , y ), find L := � ρ i =0 η i ( x ) D i x ∈ k [ x ] � D x � \ { 0 } and g ∈ k ( x , y ), s.t. L ( x , D x )( f ) = D y ( g ) and deg D x ( L ) is minimal . Almkvist and Zeilberger’s approach: g = Rf for R ∈ k ( x , y ) L − D y ( R ) ≡ 0 mod Ann( f ) � ODE in R parametrized by η i Hermite reduction approach: D i x ( f ) ≡ r i mod D y ( k ( x , y )) � Linear system in η i Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  13. Minimal telescopers 13 / 29 Hermite reduction for indefinite integration Additive decomposition: For f ∈ K ( y ), decompose f into f = D y ( g ) + a b , deg y ( a ) < deg y ( b ) and b square-free. 1. Hermite (1872): Algorithm for computing ( g , a / b ) by GCD only! Key idea: Reduction of pole order for A / Q m with Q square-free � � Q m = sQ + tD y ( Q ) A = (1 − m ) s − D y ( t ) t + D y Q m (1 − m ) Q m − 1 (1 − m ) Q m − 1 2. Ostrogradsky (1845) and Horowitz (1971): Algorithm by linear solver. 3. Yun (1977): Complexity analysis of Hermite reduction (quasi-linear). Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  14. Minimal telescopers 14 / 29 Bivariate Hermite reduction (BHR) Horowitz-Ostrogradsky’s method: Given f = P / Q ∈ k ( x , y ), � A P � + a Q ∗ := Q 1 · · · Q m and Q − := Q Q = D y Q ∗ , Q ∗ . Q − � A � H ∈ k [ x ] d y × d y H.O. System: P = H , ≤ d x a Output size: d x := max { deg x P , deg x Q } , d y := max { deg y P , deg y Q } Cramer’s rule → deg x ( A ) , deg x ( a ) ∈ O ( d x d y ) Eval-Interp algorithm: BHR with quasi-optimal complexity ˜ O ( d x d 2 y ) BHR = (Eval. f ( x 0 , y ) + UHR on f ( x 0 , y )) × O ( d x d y ) + Rat.interp. Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  15. Minimal telescopers 15 / 29 Hermite reduction for creative telescoping Key idea: For f = P / Q ∈ k ( x , y ), d ∗ y := deg y ( Q ∗ ), → D y ( g i ) + a i HR y D i a i ∈ k ( x )[ y ] and deg y ( a i ) < d ∗ x ( f ) − − Q ∗ , y . Lemma: a 0 , a 1 , . . . , a d ∗ y are linearly dependent over k ( x ). Furthermore, � ρ ρ ρ � � � � η i ( x ) D i η i ( x ) a i = 0 ⇐ ⇒ x ( f ) = D y η i g i . i =0 i =0 i =0 Theorem 1. There exists a telescoper for f of order at most d ∗ y . 2. If � ρ i =0 η i a i = 0 for smallest ρ ∈ N , then � ρ i =0 η i D i x is a minimal telescoper for f with certificate � ρ i =0 η i g i . Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  16. Minimal telescopers 16 / 29 Algorithm and complexity I Algorithm (HermiteTelescoping) 1. BHR: f = D y ( g 0 ) + a 0 / Q ∗ ; 2. For i from 1 to d ∗ y do 2.1 BHR: D i x ( f ) = D y ( g i ) + a i / Q ∗ ; 2.2 If � i j =0 η j a j = 0 for η j ∈ k ( x ) , not all zero, then return ( � i x , � i j =0 η j D j j =0 η j g j ) . Incremental strategy: ( g i , a i ) → ( g i +1 , a i +1 ) x ( f ) = D y ( g i ) + a i ( f ) = D y ( D x ( g i )) + D x ( a i ) − a i D x ( Q ∗ ) D i Q ∗ ⇒ D i +1 x Q ∗ 2 Q ∗ − a i D x ( Q ∗ ) g i +1 ) + ˜ a i +1 g i +1 ) + D x ( a i ) + ˜ a i +1 Q ∗ ⇒ D i +1 = D y (˜ ( f ) = D y ( D x ( g i ) + ˜ x Q ∗ 2 Q ∗ Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

  17. Minimal telescopers 17 / 29 Algorithm and complexity II Theorem (Complexity for HermiteTelescoping) For f = P / Q ∈ k ( x , y ) of bidegree ( d x , d y ) , HermiteTelescoping computes ( L , g ) in ˜ O ( d x d ω +3 ) ops. y Degree bounds on g i and a i : deg y ( g i ) ≤ id y , and deg y ( a i ) ≤ d ∗ deg x ( g i ) , deg x ( a i ) ∈ O ( id x d y ) , y . Cost estimate for Step i ≥ 1: Hermite reduction + linear system solving x ( f ): ˜ 2.1 Hermite reduction on D i O ( i 2 d x d 2 y ); 2.2 Finding linear dependence of a i ’s: ˜ O ( i ω d x d 2 y ).   i SV � − ˜ O ( i ω d x d 2 η j a j = 0 � deg x ∈ O ( id x d y ) ← − y ) .   j =0 i × d ∗ y Shaoshi Chen Creative Telescoping for Bivariate Rational Functions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend