complete two loop corrections to h
play

Complete two-loop corrections to H Sandro Uccirati Karlsruhe - PowerPoint PPT Presentation

PSI Apr. 10, 2008 Complete two-loop corrections to H Sandro Uccirati Karlsruhe University In collaboration with C. Sturm, G. Passarino PSI Apr. 10, 2008 S. Uccirati Page 1 1 b b W W Z Z PSI Apr. 10, 2008


  1. PSI – Apr. 10, 2008 Complete two-loop corrections to H → γγ Sandro Uccirati Karlsruhe University In collaboration with C. Sturm, G. Passarino PSI – Apr. 10, 2008 S. Uccirati Page 1

  2. 1 � b b W W Z Z PSI – Apr. 10, 2008 � t t Higgs decays in the Standard Model 0.1 � � g g � • H → bb : • 0.01 BR( H ) Dominant process for light Higgs, but huge QCD background. � � 0.001 • H → γγ : • s s � Rare process, but experimentally �� clean. Z � Discovery channel for light Higgs 0.0001 100 130 160 200 300 500 700 1000 M [GeV℄ H • H → WW, ZZ : • Discovery channels for heavy Higgs S. Uccirati Page 2

  3. PSI – Apr. 10, 2008 Lowest order (one-loop) for H → γγ (in SM) • Well-known result • • Ellis-Gaillard-Nanopoulos 1976, Shifman-Vainshtein-Voloshin-Zakharov 1979 • γ real W-mass 0.05 W , Φ complex W-mass H W , Φ 0.04 ) [keV] W , Φ γ 0.03 γ γ → γ (H Γ t 0.02 H t 0.01 t γ 100 110 120 130 140 150 160 170 M [GeV] h S. Uccirati Page 3

  4. PSI – Apr. 10, 2008 Two-loop SM corrections to H → γγ • QCD corrections • • Zheng-Wu ’90, Djouadi-Spira-van der Bij-Zerwas ’91, Dawson-Kauffman ’93, • Melnikov-Yakovlev ’93, Inoue-Najima-Oka-Saito ’94, Steinhauser ’96, Fleischer-Tarasov-Tarasov ’04, Harlander-Kant ’05, Aglietti-Bonciani-Degrassi-Vicini ’06, Passarino-Sturm-U. ’07 • EW corrections • • corrections at O ( G µ m 2 H ) (Korner-Melnikov-Yakovlev ’96) • • corrections at O ( G µ m 2 t ) (Fugel-Kniehl-Steinhauser ’04) • • light-fermion contribution (Aglietti-Bonciani-Degrassi-Vicini ’04) • • top-quark and bosonic contributions for m H < 150 GeV (Degrassi-Maltoni ’05) • • full EW contributions (Passarino-Sturm-U. ’07) • S. Uccirati Page 4

  5. PSI – Apr. 10, 2008 The amplitude of H ( P ) → γ ( p 1 ) + γ ( p 2 ) A µν ( H → γγ ) = g 3 s 2 2 � F D δ µν + � F ( ij ) � p µ θ i p ν j + F ǫ ǫ ( µ, ν, p 1 , p 2 ) . P 16 π 2 i,j =1 Interference with 1-loop ⇓ Bose symmetry Ward identities A µν ( H → γγ ) = g 3 s 2 16 π 2 ( F D δ µν + F P p µ θ 2 p ν 1 ) . Order by order Ward identities: F D + p 1 · p 2 F P = 0 → in pertubation theory Introduce projectors: „ « δ µν − p µ 2 + p µ 1 p ν 2 p ν 1 F D = P µν D A µν , P µν 1 = D n − 2 p 1 · p 2 „ « δ µν − ( n − 1) p µ 2 + p µ 1 p ν 2 p ν 1 1 F P ≡ F (21) = P µν A µν , P µν 1 = − P P P n − 2 p 1 · p 2 p 1 · p 2 S. Uccirati Page 5

  6. PSI – Apr. 10, 2008 The amplitude is computed with the GraphShot package • A FORM code to generate and manipulate the amplitudes in the SM • • A link to FORTRAN libraries for numerical computation • • Authors: G.Passarino, M.Passera, A.Ferroglia, S.Actis, C.Sturm, S.U. • • It is WORK IN PROGRESS (not yet available) • Let’s discover the path to compute Feynman amplitudes ... S. Uccirati Page 6

  7. PSI – Apr. 10, 2008 1. The Feynman rules • The SM Lagrangian → normal rules for propagators and vertices • • Special rules: • • Higgs vacuum expectation value • H H normal : = 0 special : = 0 • Z-Photon exchange ( g → g (1 + Γ)): • normal : Γ = 0 γ ν = G AZ d ( p 2 ) δ µν + G AZ pp ( p 2 ) p µ p ν , G AZ Z special : d (0) = 0 µ • Renormalization → MS scheme • • Counterterms for couplings, masses, fields, ... • • Finite Feynman amplitudes • S. Uccirati Page 7

  8. PSI – Apr. 10, 2008 2. Generate the amplitude • Group the diagrams into families, paying attention to: • • Permutation of external legs • p 3 p 3 p 3 p 3 p 2 p 1 p 1 p 1 p 1 p 1 p 1 p 2 → p 2 p 2 p 2 p 2 p 3 p 3 • Combinatorial factors (Goldberg strategy) • • Combine the topologies and the Feynman rules • • Introduce projectors • • Compute the trace of Dirac matrices • ⇓ All loop momenta are contracted with other momenta S. Uccirati Page 8

  9. PSI – Apr. 10, 2008 3. Reduction to Basic Integrals • Recursive application of: • • Obvious reduction: • p 2 − m 2 + M 2 2 q.p 1 1 ( q 2 + m 2 ) [( q + p ) 2 + M 2 ] = q 2 + m 2 − ( q + p ) 2 + M 2 − ( q 2 + m 2 ) [( q + p ) 2 + M 2 ] • Mapping on a fixed standard routing for loop momenta: • p 2 p 2 q 2 q 2 + P 0 1 q 2 + p 2 q 2 + p 1 @ q 1 → − q 1 − P q 1 − q 2 q 1 − q 2 − P − P − → B C A q 2 → − q 2 − P q 1 + p 2 q 1 + p 1 q 1 q 1 + P p 1 p 1 • Symmetrization: • p 1 p 2 m 1 m 5 0 1 m 2 m 4 @ q 1 → − q 2 − P m 3 m 3 − P − P − → B C A q 2 → − q 1 − P m 4 m 2 m 5 m 1 p 2 p 1 S. Uccirati Page 9

  10. PSI – Apr. 10, 2008 • We end with integrals up to rank 2: • • 1-loop functions • • 2-loop tadpoles (2 topologies) • T A T B • 2-loop self-energies (4 topologies) • S A S C S E S D • 2-loop vertices (6 topologies) • V E V I V G V M V K V H S. Uccirati Page 10

  11. PSI – Apr. 10, 2008 • Full scalarization of 2-loop self-energies • • Reduction in sub-loops: • d n q 1 q µ Z 2 ] = X q µ 1 1 )[( q 1 − q 2 ) 2 + m 2 2 ( q 2 1 + m 2 1 A new propagator 2 is introduced with spurious mass singularities. q 2 • New tadpoles with dots are generated • • Use integration by parts identities to reduce all tadpoles to: • T B • Full scalarization of 1-loop diagrams • • All 1-loop diagrams with dots are reduced wiht integration by parts • identities S. Uccirati Page 11

  12. PSI – Apr. 10, 2008 Feynman parametrization Consider a general loop integral: Z q µ 1 · · · q µ R D i = ( q + k i ) 2 + m 2 I µ 1 ··· µ R d n q = 1 D N , i N D 1 D 2 · · · D N − S. Uccirati Page 12

  13. PSI – Apr. 10, 2008 Feynman parametrization Z q µ 1 · · · q µ R D i = ( q + k i ) 2 + m 2 I µ 1 ··· µ R d n q = , i N D 1 D 2 D N − D N · · · 1 |{z} |{z} |{z} | {z } x N − (1 − x 1 ) ( x 1 − x 2 ) ( x N − 2 − x N − 1 ) 1 The product of N propagators becomes one propagator to power N Z 1 Z x 1 Z x N − 2 Z dx N − 1 [( q + K ) 2 + M 2 ] − N d n q q µ 1 · · · q µ R I µ 1 ··· µ R = Γ( N ) dx 1 dx 2 · · · N 0 0 0 k µ 1 (1 − x 1 ) + k µ 2 ( x 1 − x 2 ) + . . . + k µ 1 ) + k µ K µ = 1 ( x N − 2 − x N − N x N − 1 N − M 2 ( m 2 1 + k 2 1 )(1 − x 1 ) + ( m 2 2 + k 2 = 2 )( x 1 − x 2 ) + . . . +( m 2 1 + k 2 1 ) + ( m 2 N + k 2 1 − K 2 1 )( x N − 2 − x N − N ) x N − N − N − S. Uccirati Page 13

  14. PSI – Apr. 10, 2008 Feynman parametrization Z q µ 1 · · · q µ R D i = ( q + k i ) 2 + m 2 I µ 1 ··· µ R d n q = 1 D N , i N D 1 D 2 · · · D N − Z 1 Z x 1 Z x N − 2 Z dx N − 1 [( q + K ) 2 + M 2 ] − N d n q q µ 1 · · · q µ R = Γ( N ) dx 1 dx 2 · · · 0 0 0 k µ 1 (1 − x 1 ) + k µ 2 ( x 1 − x 2 ) + . . . + k µ 1 ) + k µ K µ = 1 ( x N − 2 − x N − N x N − 1 N − M 2 ( m 2 1 + k 2 1 )(1 − x 1 ) + ( m 2 2 + k 2 = 2 )( x 1 − x 2 ) + . . . +( m 2 1 + k 2 1 ) + ( m 2 N + k 2 1 − K 2 1 )( x N − 2 − x N − N ) x N − N − N − Integration in d n q is performed ”Z 1 Z x 1 Z x N − “ N − n 2 n n 1 ( M 2 ) 2 − N 2 Γ I N = i π dx 1 dx 2 · · · dx N − 2 0 0 0 ”Z 1 Z x 1 Z x N − “ N − n 2 n n I µ 1 1 ( − K µ 1 ) ( M 2 ) 2 Γ 2 − N = i π dx 1 dx 2 · · · dx N − N 2 0 0 0 ”Z 1 Z x 1 Z x N − K µ 1 K µ 2 + M 2 δ µ 1 µ 2 » – “ N − n 2 n n I µ 1 µ 2 ( M 2 ) 2 Γ 2 − N = i π dx 1 dx 2 · · · dx N − 1 N 2 2 N − n − 2 0 0 0 I µ 1 µ 2 µ 3 = . . . N S. Uccirati Page 14

  15. PSI – Apr. 10, 2008 4. Analytical cancellations of divergences Extraction of the UV poles • 1-loop diagrams → trivial (Γ( ǫ/ 2)) • • 2-loop diagrams: • • Overall divergency → trivial (Γ( ǫ )) • • Singularities coming from sub-loops → hidden in the integrand • p 2 [1] = q 2 1 + m 2 1 m 5 [2] = ( q 1 − q 2 ) 2 + m 2 Z d n q 1 d n q 2 = 1 2 − P V I = , [3] = q 2 2 + m 2 m 4 m 2 π 4 [1] [2] [3] [4] [5] 3 [4] = ( q 2 + p 1 ) 2 + m 2 m 1 | {z } 4 m 3 x [5] = ( q 2 + P ) 2 + m 2 p 1 5 | {z } y 1 ,y 2 ,y 3 Z 1 Z dS 3 ( y 1 , y 2 , y 3 ) [ x (1 − x )] − ǫ/ 2 (1 − y 1 ) ǫ/ 2 − 1 V − 1 − ǫ = C ǫ dx 0 • The single pole can always be expressed in terms of 1-loop functions. • m 1 p 2 m 5 I = m 2 m 2 − P V + finite part . × 3 3 m 4 m 3 p 1 m 2 S. Uccirati Page 15

  16. PSI – Apr. 10, 2008 Collinear divergencies They come from the coupling of light particles (m) with massless particles q 1 q 1 Single p m p m = ⇒ m divergency m q 1 + p q 1 + p m m m m Double m = ⇒ m ′ m m divergency m ′ m ′ m ′ • Single divergency: Subtraction method • J 1 = µ 4 − n � 1 d n q 1 1 + m 2 )[( q 1 + p ) 2 + m 2 ][( q 1 − q 2 ) 2 + M 2 ] . ( q 2 i π 2 S. Uccirati Page 16

  17. PSI – Apr. 10, 2008 After parametrization Z 1 Z z dy 1 V = [ A − y ( q 2 + p ) 2 ] y + m 2 (1 − y ) , A = ( q 2 + p z ) 2 + M 2 . J 1 = dz V , 0 0 Add and subtract: V − 1 = ( A y + m 2 ) − 1 0 „ 1 Z 1 Z z Z 1 Z z « 1 V − 1 J 1 = dz dy A y + m 2 + dz dy V 0 0 0 0 0 " # Z 1 Z 1 Z 1 Z z − ln m 2 dz 1 dz 1 A ln Az dy A − y ( q 2 + p ) 2 − 1 1 + O ( m 2 ) . = A + + dz s s y A 0 0 0 0 Example: p 2 p 2 M 5 M 5 � 1 ln m 2 M 4 − P − P M 3 = dz + finite part M 4 s 0 m M 3 m (1 z ) p 1 − p 1 zp 1 The coefficients of the log are 1-loop functions S. Uccirati Page 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend