combinatorial lines
play

Combinatorial lines Nina Kam ev , joint work with David Conlon and - PowerPoint PPT Presentation

Combinatorial lines Nina Kam ev , joint work with David Conlon and Christoph with few intervals Spiegel The Hales-Jewett Theorem N OTATION E XAMPLE : a combinatorial line in 3 12 Ground set , usually 3 = 22 32


  1. Combinatorial lines Nina Kam ฤev , joint work with David Conlon and Christoph with few intervals Spiegel

  2. The Hales-Jewett Theorem N OTATION E XAMPLE : a combinatorial line in 3 12 โ€ข Ground set ๐‘› ๐‘œ , usually 3 ๐‘œ ๐‘ฃ = 22 โˆ— 32 โˆ— 12 โˆ—โˆ—โˆ— 22 Wildcard โ€ข A root is a word ๐‘ฅ of length ๐‘œ ๐‘ฃ 1 = 22๐Ÿ32๐Ÿ12๐Ÿ๐Ÿ๐Ÿ22 set ๐‘ฃ 2 = 22๐Ÿ‘32๐Ÿ‘12๐Ÿ‘๐Ÿ‘๐Ÿ‘22 in the symbols [๐‘›] โˆช โˆ— with ๐‘ฃ 3 = 22๐Ÿ’32๐Ÿ’12๐Ÿ’๐Ÿ’๐Ÿ’22 at least one โˆ— . โ€ข For ๐‘— โˆˆ [๐‘›] , ๐‘ฅ ๐‘— is the word Theorem (Hales, Jewett, โ€˜63). Given obtained from ๐‘ฅ by replacing ๐‘›, ๐‘  โˆˆ โ„• , there is a natural number ๐‘œ each โˆ— by ๐‘— . such that any ๐‘  -colouring of [๐‘›] ๐‘œ โ€ข A ( combinatorial ) line is a set contains a monochromatic of words ๐‘ฅ ๐‘— : ๐‘— ๐œ—[๐‘›] . combinatorial line. A line in 4 3 with โ€ข ๐ผ๐พ ๐‘›, ๐‘  is the minimal ๐‘œ for which the wildcard set {1,2,3} conclusion holds

  3. A warm- upโ€ฆ Claim. ๐ผ๐พ 2, ๐‘  = ๐‘ . Proof. Let ๐‘‘: [2] ๐‘  โ†’ โ„ค ๐‘  .

  4. A warm- upโ€ฆ Claim. ๐ผ๐พ 2, ๐‘  = ๐‘ . Proof. Let ๐‘‘: [2] ๐‘  โ†’ โ„ค ๐‘  . Consider the words 1111111 โ€ฆ 1 11 โ€ฆ 111 โ€ฆ 2 11 โ€ฆ 122 โ€ฆ 2 โ‹ฎ 1222222 โ€ฆ 2 2222222 โ€ฆ 2 . Among ๐‘  + 1 words, two have the same colour โ‡’ monochromatic line.

  5. Shelahโ€™s proof of HJT Consequences 2 โ€ข ๐ผ๐พ(๐‘›, ๐‘ ) โ‰ค 2 2 โ‹ฐ 2๐ผ๐พ(๐‘› โˆ’ 1, ๐‘ ) times โ€ข For ๐‘› = 3 , there exists an ๐‘  - interval line (a line whose wildcard set consists of at most ๐‘  intervals), e.g. ๐‘ฃ = 33 โˆ—2โˆ—21 โˆ—โˆ—โˆ— 33 โ‰ค ๐‘  intervals Is this the best possible?

  6. Lines with few intervals Definition. โ„ ๐‘›, ๐‘  = min { ๐‘Ÿ : for large ๐‘œ , any ๐‘  -colouring of [๐‘›] ๐‘œ contains a monochromatic ๐‘Ÿ -interval line}. 7 Observations. โ„(3, ๐‘ ) 6 โ€ข โ„ 2, ๐‘  = 1 for all ๐‘  . 5 โ€ข โ„ 3, ๐‘  โ‰ค ๐‘ , generally โ„ ๐‘›, ๐‘  โ‰ค ๐ผ๐พ(๐‘› โˆ’ 1, ๐‘ ) 4 3 Theorem. 2 (i) โ„ 3, ๐‘  = ๐‘  for odd ๐‘  (Conlon, K) 1 โ„ 3, 2 = 1 (ii) (Leader, Rรคty) 1 3 5 7 ๐‘  (iii) โ„ 3 ๐‘  = ๐‘  โˆ’ 1 for even ๐‘  (K, Spiegel).

  7. (i) The colouring avoiding ๐‘  โˆ’ 1 -interval lines

  8. (i) The colouring avoiding ๐‘  โˆ’ 1 -interval lines ๐‘‘๐‘๐‘œ๐‘ข๐‘ ๐‘๐‘‘๐‘ข ๐‘‘๐‘๐‘ฃ๐‘œ๐‘ข [3] ๐‘œ [3] โ‰ค๐‘œ 3 โ„ค ๐‘  ๐‘ฃ 1 = 2213211211122 โŸผ ๐‘ฃ 1 = 2132 1212 โŸผ ๐œ’ ๐‘ฃ 1 = 3, 4, 1 ๐‘ฃ 2 = 2223221222222 โŸผ ๐‘ฃ 2 = 2 32 12 โŸผ ๐œ’ ๐‘ฃ 2 = (1, 3, 1) ๐‘ฃ 3 = 2233231233322 โŸผ ๐‘ฃ 3 = 2 3231232 โŸผ ๐œ’ ๐‘ฃ 3 = (1, 4, 3)

  9. (i) The colouring avoiding ๐‘  โˆ’ 1 -interval lines ๐‘‘๐‘๐‘œ๐‘ข๐‘ ๐‘๐‘‘๐‘ข ๐‘‘๐‘๐‘ฃ๐‘œ๐‘ข [3] ๐‘œ [3] โ‰ค๐‘œ 3 โ„ค ๐‘  ๐‘ฃ 1 = 22๐Ÿ32๐Ÿ12๐Ÿ๐Ÿ๐Ÿ22 โŸผ ๐‘ฃ 1 = 2๐Ÿ32 12๐Ÿ2 โŸผ ๐œ’ ๐‘ฃ 1 = 3, 4, 1 ๐‘ฃ 2 = 22๐Ÿ‘32๐Ÿ‘12๐Ÿ‘๐Ÿ‘๐Ÿ‘22 โŸผ ๐‘ฃ 2 = 2 32 12 โŸผ ๐œ’ ๐‘ฃ 2 = (1, 3, 1) ๐‘ฃ 3 = 22๐Ÿ’32๐Ÿ’12๐Ÿ’๐Ÿ’๐Ÿ’22 โŸผ ๐‘ฃ 3 = 2 32๐Ÿ’12๐Ÿ’2 โŸผ ๐œ’ ๐‘ฃ 3 = (1, 4, 3) ๐‘ฃ = 22 โˆ— 32 โˆ— 12 โˆ—โˆ—โˆ— 22 โŸผ เดฅ ๐‘ฃ = 2 โˆ— 32 โˆ— 12 โˆ— 2 โŸผ ๐œ’ เดฅ ๐‘ฃ = (1, 4, 1) ๐œ’ ๐‘ฃ 3 โˆ™ (2, 2, โˆ’1) ๐œ’ เดฅ ๐‘ฃ ๐œ’ ๐‘ฃ 1 โ„ค ๐‘  ๐œ’ ๐‘ฃ 2 3 โ„ค ๐‘ 

  10. (iii) The upper bound Theorem (K, Spiegel). โ„ 3, ๐‘  = ๐‘  โˆ’ 1 for even ๐‘  . โ€ข Idea: reduce the problem to the โ€˜linearโ€™ colourings Proposition. For any ๐‘  , if โ„ 3 ๐‘  > ๐‘  โˆ’ 1 , then there is a colouring ๐‘ˆ: [3] ๐‘œ โ†’ โ„ค ๐‘  avoiding ๐‘  โˆ’ 1 -interval lines with ๐‘ˆ ๐‘ฃ = ๐‘ˆโ€ฒ ๐œ’ เดค ๐‘ฃ for all ๐‘ฃ . That is, ๐‘ˆ has the form ๐‘ˆ โ€ฒ เดฅ ๐œ’ [3] ๐‘œ [3] โ‰ค๐‘œ 3 3 โ„ค ๐‘  โ„ค ๐‘  โ€ข Odd ๐‘  โ€“ there is a colouring โ€ข Even ๐‘  โ€“ contradiction.

  11. Onwards and upwards Improve the bounds ๐‘  โ‰ค โ„ ๐‘›, ๐‘  โ‰ค ๐ผ๐พ ๐‘› โˆ’ 1, ๐‘  . New proofs of the Hales-Jewett theorem?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend