coherent interaction graphs
play

Coherent interaction graphs . A nondeterministic geometry of - PowerPoint PPT Presentation

. . . . . . . . . . . . Coherent interaction graphs . A nondeterministic geometry of interaction for MLL Nguyn L Thnh Dng 1,2 Thomas Seiller 2 1 cole normale suprieure de Paris 2 Laboratoire dinformatique de Paris Nord,


  1. . . . . . . . . . . . . Coherent interaction graphs . A nondeterministic geometry of interaction for MLL Nguyễn Lê Thành Dũng 1,2 Thomas Seiller 2 1 École normale supérieure de Paris 2 Laboratoire d’informatique de Paris Nord, CNRS / Université Paris 13 Linearity/TLLA 2018 (FLoC workshop) Oxford, July 8 th , 2018 Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 / 22

  2. . . . . . . . . . . . . . . . . . MLL proofs as matchings (i.e. fjxed-point-free involutions) Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . 2 / 22 . . . . . 2 proofs of A ⊗ A ⊸ A ⊗ A : ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A

  3. . . . . . . . . . . . . . . . . . MLL proofs as matchings (i.e. fjxed-point-free involutions) Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . 2 / 22 . . . . . 2 proofs of A ⊗ A ⊸ A ⊗ A : ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A

  4. . . . . . . . . . . . . . . . . Cut-elimination on matchings Geometry of Interaction: predict the normal form by following paths Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . 3 / 22 . . . ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A (Cut) ⊢ A ⊥ ` A ⊥ , A ⊗ A

  5. . . . . . . . . . . . . . . . . Cut-elimination on matchings Geometry of Interaction: predict the normal form by following paths Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . 3 / 22 . . . ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A (Cut) ⊢ A ⊥ ` A ⊥ , A ⊗ A

  6. . . . . . . . . . . . . . . . . Cut-elimination on matchings Geometry of Interaction: predict the normal form by following paths Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . 3 / 22 . . . ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A (Cut) ⊢ A ⊥ ` A ⊥ , A ⊗ A

  7. . . . . . . . . . . . . . . . . Cut-elimination on matchings Geometry of Interaction: predict the normal form by following paths Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . 3 / 22 . . . ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A (Cut) ⊢ A ⊥ ` A ⊥ , A ⊗ A

  8. . . . . . . . . . . . . . . . . Cut-elimination on matchings Geometry of Interaction: predict the normal form by following paths Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . 3 / 22 . . . ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ , A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A ⊢ A ⊥ ` A ⊥ , A ⊗ A (Cut) ⊢ A ⊥ ` A ⊥ , A ⊗ A

  9. . . . . . . . . . . . . . . . . Cut-elimination on matchings: another example Alternating paths composition of strategies in game semantics Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . 4 / 22 . . . ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ ⊗ A ⊥ , A , A ⊢ A ⊥ , A ⊢ A ⊥ ` A ⊢ A ⊗ A ⊥ , A ⊥ ` A (Cut) ⊢ A ⊥ ` A

  10. . . . . . . . . . . . . . . . . Cut-elimination on matchings: another example Alternating paths composition of strategies in game semantics Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . 4 / 22 . . . ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ ⊗ A ⊥ , A , A ⊢ A ⊥ , A ⊢ A ⊥ ` A ⊢ A ⊗ A ⊥ , A ⊥ ` A (Cut) ⊢ A ⊥ ` A

  11. . . . . . . . . . . . . . . . . . Cut-elimination on matchings: another example Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . 4 / 22 . . . . . ⊢ A ⊥ , A ⊢ A ⊥ , A ⊢ A ⊥ ⊗ A ⊥ , A , A ⊢ A ⊥ , A ⊢ A ⊥ ` A ⊢ A ⊗ A ⊥ , A ⊥ ` A (Cut) ⊢ A ⊥ ` A Alternating paths ≃ composition of strategies in game semantics

  12. . . . . . . . . . . . . . . From matchings to Interaction Graphs Matchings are both a GoI and a sort of game semantics Execution between matchings can be extended to arbitrary graphs: Defjnition paths between G and H . Proposition Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . 5 / 22 Let G , H be two graphs. Their execution G :: H is the graph whose vertex set is V ( G ) △ V ( H ) , and whose edges correspond to alternating � − � : { MLL proofs } → { matchings } ⊂ { graphs } then enjoys: � cut ( π, ρ ) � = � π � :: � ρ �

  13. . . . . . . . . . . . . Interaction graphs as a denotational semantics . Proposition (Associativity / Church–Rosser) Then it suffjces to defjne types as some sets of graphs with the same vertex set to get a model of MLL, that is: Theorem morphisms given by execution. In general, a whole family of models, depending on choices of Extension to MELL: generalize from graphs to graphings (cf. Luc Pellissier’s talk) to represent exponentials Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 / 22 If V ( F ) ∩ V ( G ) ∩ V ( H ) = ∅ , then ( F :: G ) :: H = F :: ( G :: H ) . Interaction graphs constitute a ∗ -autonomous category with composition of parameters (e.g. monoid of weights → quantitative semantics)

  14. . Our goal: non-determinism / additives . . . . . . . . . . Let’s extend MLL with non-deterministic sums of (sub-)proofs: . How to interpret this rule in interaction graphs? Also relevant for additives : &-intro is a non-det. superposition A solution: coherent interaction graphs Originally introduced in Seiller’s PhD for a difgerent purpose Using a coherence relation is common for additives, e.g. confmict nets (Hughes–Heijltjes), Girard’s “Transcendental syntax 2”, etc. But we won’t treat additives here: technical issues common to all GoI approaches Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . 7 / 22 . . . . . . . . . . . . . ⊢ Γ . . . ⊢ Γ (Sum) ⊢ Γ Formal sums of graphs → size explosion

  15. . . . . . . . . . . . . Our goal: non-determinism / additives . Let’s extend MLL with non-deterministic sums of (sub-)proofs: How to interpret this rule in interaction graphs? Also relevant for additives : &-intro is a non-det. superposition A solution: coherent interaction graphs Using a coherence relation is common for additives, e.g. confmict nets (Hughes–Heijltjes), Girard’s “Transcendental syntax 2”, etc. GoI approaches Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . 7 / 22 . . . . . . . . . . . . ⊢ Γ . . . ⊢ Γ (Sum) ⊢ Γ Formal sums of graphs → size explosion ▶ Originally introduced in Seiller’s PhD for a difgerent purpose ▶ But we won’t treat additives here: technical issues common to all

  16. . . . . . . . . . . . . . . . Coherent graphs Defjnition Defjnition G Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . 8 / 22 . . . . . . . . . . . A coherent graph is a graph G equipped with a coherence relation ¨ G on its edge set E ( G ) . i.e. ( E ( G ) , ¨ G ) is a coherent space (which we’ll identify with E ( G ) ) If V ( G ) = V ( H ) = V , then the incoherent sum of G and H is defjned as ⌣ + H = ( V , E ( G ) ⊕ E ( H )) . ( ⊕ : disjoint union of coherent spaces) ⌣ + interprets the Sum rule Think of a coherent graph ( V , E ) as the formal sum ∑ ( V , C ) ( C clique ) C ⊂ E

  17. . . . . . . . . . . . . . . . . Execution of coherent graphs: example Incoherence: don’t take this path Nguyễn L. T. D. & T. Seiller Coherent interaction graphs Linearity/TLLA 2018 . . . . . . . . . . . . . . . . . . . . . . . . 9 / 22 Here red ¨ black, blue ¨ black, red ⌣ blue

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend