coding theorems for reversible embedding
play

Coding Theorems for Reversible Embedding Frans Willems and Ton - PowerPoint PPT Presentation

Coding Theorems for Reversible Embedding Frans Willems and Ton Kalker T.U. Eindhoven, Philips Research DIMACS, March 16-19, 2003 Outline 1. Gelfand-Pinsker coding theorem 2. Noise-free embedding 3. Reversible embedding 4. Robust and


  1. Coding Theorems for Reversible Embedding Frans Willems and Ton Kalker T.U. Eindhoven, Philips Research DIMACS, March 16-19, 2003

  2. Outline 1. Gelfand-Pinsker coding theorem 2. Noise-free embedding 3. Reversible embedding 4. Robust and reversible embedding 5. Partially reversible embedding 6. Remarks 1

  3. I. The Gelfand-Pinsker Coding Theorem ˆ Y N Z N W W Y N = e ( W, X N ) ✲ ✲ ✲ ˆ ✲ W = d ( Z N ) P c ( z | y, x ) ✻ ✻ X N P s ( x ) Messages: Pr { W = w } = 1 /M for w ∈ { 1 , 2 , · · · , M } . Side information: Pr { X N = x N } = Π N n =1 P s ( x n ) for x N ∈ X N . Channel: discrete memoryless {Y × X , P c ( z | y, x ) , Z} . Error probability: P E = Pr { ˆ W � = W } . Rate: R = 1 N log 2 ( M ). 2

  4. Capacity The side-information capacity C si is the largest ρ such that for all ǫ > 0 there exist for all large enough N encoders and decoders with R ≥ ρ − ǫ and P E ≤ ǫ . THEOREM (Gelfand-Pinsker [1980]): C si = P t ( u,y | x ) I ( U ; Z ) − I ( U ; X ) . max (1) Achievability proof: Fix a test-channel P t ( u, y | x ). Consider sets A ǫ ( · ) of strongly typical sequences , etc. (a) For each message index w ∈ { 1 , · · · , 2 NR } , generate 2 NR u sequences u N at random according to P ( u ) = � x,y P s ( x ) P t ( u, y | x ). Give these se- quences the label w . (b) When message index w has to be transmitted choose a sequence u N having label w such that ( u N , x N ) ∈ A ǫ ( U, X ). Such a sequence exists almost always if R u > I ( U ; X ) (roughly). 3

  5. (c) The input sequence y N results from applying the ”channel” P ( y | u, x ) = y P t ( u, y | x ) to u N and x N . Then y N is transmitted. P t ( y, u | x ) / � (d) The decoder upon receiving z N , looks for the unique sequence u N such that ( u N , z N ) ∈ A ǫ ( U, Z ). If R + R u < I ( U ; Z ) (roughly) such a unique sequence exists. The message index is the label of u N . Conclusion is that R < I ( U ; Z ) − I ( U ; X ) is achievable. Observations A: As an intermediate result the decoder recovers the sequence u N . B: The transmitted u N is jointly typical with the side-info sequence x N , i.e. ( u N , x N ) ∈ A ǫ ( U, X ) thus their joint composition is OK . Note that P ( u, x ) = � y P s ( x ) P t ( u, y | x ). 4

  6. II. Noise-free Embedding X N Y N Y N = e ( W, X N ) ✲ ✲ P s ( x ) ✻ ✲ ✲ ˆ W = d ( Y N ) ˆ W W Messages: Pr { W = w } = 1 M for w ∈ { 1 , 2 , · · · , M } . Source (host): Pr { X N = x N } = Π n =1 ,N P s ( x n ) for x N ∈ X N . Error probability: P E = Pr { ˆ W � = W } . Rate: R = 1 N log 2 ( M ). Embedding distortion: D xy = E [ 1 n =1 ,N D xy ( X n , e n ( W, X N ))] for some � N distortion matrix { D xy ( x, y ) , x ∈ X , y ∈ Y} . 5

  7. Achievable region noise-free embedding A rate-distortion pair ( ρ, ∆ xy ) is said to be achievable if for all ǫ > 0 there exists for all large enough N encoders and decoders such that R ≥ ρ − ǫ, ∆ xy + ǫ, D xy ≤ P E ≤ ǫ. THEOREM (Chen [2000], Barron [2000]): The set of achievable rate-distortion pairs is equal to G nfe which is defined as G nfe = { ( ρ, ∆ xy ) : 0 ≤ ρ ≤ H ( Y | X ) , � ∆ xy ≥ P ( x, y ) D xy ( x, y ) , x,y for P ( x, y ) = P s ( x ) P t ( y | x ) } . (2) Again {X , P t ( y | x ) , Y} is called test-channel . 6

  8. Proof: Achievability: In the Gelfand-Pinsker achievability proof, note that Z = Y (noiseless channel) and take the auxiliary random variable U = Y . Then ( x N , y N ) ∈ A ǫ ( X, Y ) hence D xy is OK. For the embedding rate we obtain R = I ( U ; Z ) − I ( U ; X ) = I ( Y ; Y ) − I ( Y ; X ) = H ( Y | X ) . Converse: Rate part: H ( W ) − H ( W | ˆ log 2 ( M ) W ) + Fano term ≤ H ( W | X N ) − H ( W | X N , Y N ) + Fano term ≤ I ( W ; Y N | X N ) + Fano term = H ( Y N | X N ) + Fano term ≤ � ≤ H ( Y n | X n ) + Fano term n =1 ,N ≤ NH ( Y | X ) + Fano term , 7

  9. where X and Y are random variables with Pr { ( X, Y ) = ( x, y ) } = 1 � Pr { ( X n , Y n ) = ( x, y ) } , N n =1 ,N for x ∈ X and y ∈ Y . Note that for x ∈ X Pr { X = x } = P s ( x ) . Distortion part: Pr { ( X N , Y N ) = ( x N , y N ) } 1 � � D xy = D xy ( x n , y n ) N n x N ,y N � = Pr { ( X, Y ) = ( x, y ) } D xy ( x, y ) . x,y Let P E ↓ 0, etc. 8

  10. III. Reversible Embedding X N Y N Y N = e ( W, X N ) ✲ ✲ P s ( x ) ˆ W ✻ ✲ ✲ ( ˆ W, ˆ X N 1 ) = d ( Y N ) W ✲ ˆ X N 1 Messages: Pr { W = w } = 1 M for w ∈ { 1 , 2 , · · · , M } . Source (host): Pr { X N = x N } = Π n =1 ,N P s ( x n ) for x N ∈ X N . Error probability: P E = Pr { ˆ W � = W ∨ ˆ X N 1 � = X N } . Rate: R = 1 N log 2 ( M ). Embedding distortion: D xy = E [ 1 n =1 ,N D xy ( X n , e n ( W, X N ))] for some � N distortion matrix { D xy ( x, y ) , x ∈ X , y ∈ Y} . Inspired by Fridrich, Goljan, and Du, ”Lossless data embedding for all image formats,” Proc. SPIE, Security and Watermarking of Multimedia Contents , San Jose, CA, 2002. 9

  11. Achievable region for reversible embedding A rate-distortion pair ( ρ, ∆ xy ) is said to be achievable if for all ǫ > 0 there exists for all large enough N encoders and decoders such that R ≥ ρ − ǫ, ∆ xy + ǫ, D xy ≤ P E ≤ ǫ. RESULT (Kalker-Willems [2002]): The set of achievable rate-distortion pairs is equal to G re which is defined as G re = { ( ρ, ∆ xy ) : 0 ≤ ρ ≤ H ( Y ) − H ( X ) , � ∆ xy ≥ P ( x, y ) D xy ( x, y ) , x,y for P ( x, y ) = P s ( x ) P t ( y | x ) } . (3) Note that {X , P t ( y | x ) , Y} is the test channel. 10

  12. Proof: Achievability: In the Gelfand-Pinsker achievability proof, note that Z = Y (noiseless channel) and take the auxiliary random variable U = [ X, Y ]. Then x N can be reconstructed by the decoder and ( x N , y N ) ∈ A ǫ ( X, Y ) hence D xy is OK. For the embedding rate we obtain R = I ( U ; Z ) − I ( U ; X ) = I ([ X, Y ]; Y ) − I ([ X, Y ]; X ) = H ( Y ) − H ( X ) . Converse: Rate part: H ( W ) − H ( W, X N | ˆ X N W, ˆ log 2 ( M ) 1 ) + Fano term ≤ H ( W, X N ) − H ( W, X N | ˆ X N 1 ) − H ( X N ) + Fano term W, ˆ = H ( W, X N ) − H ( W, X N | Y N , ˆ X N 1 ) − H ( X N ) + Fano term W, ˆ ≤ I ( W, X N ; Y N ) − H ( X N ) + Fano term = H ( Y N ) − H ( X N ) + Fano term = � ≤ [ H ( Y n ) − H ( X n )] + Fano term n =1 ,N ≤ N [ H ( Y ) − H ( X )] + Fano term , 11

  13. where X and Y are random variables with Pr { ( X, Y ) = ( x, y ) } = 1 � Pr { ( X n , Y n ) = ( x, y ) } , N n =1 ,N for x ∈ X and y ∈ Y . Note that for x ∈ X Pr { X = x } = P s ( x ) . Distortion part: Pr { ( X N , Y N ) = ( x N , y N ) } 1 � � D xy = D xy ( x n , y n ) N n x N ,y N � = Pr { ( X, Y ) = ( x, y ) } D xy ( x, y ) . x,y Let P E ↓ 0, etc. 12

  14. Example: Binary source, Hamming distortion p x p y ❍ ❍ ✟ ◗ ✟ ✑ ◗ ✑ ◗ ✑ 1 d 1 1 ◗ ✑ ◗ ✑ ◗ ✑ ◗ ✑ ◗ X Y ✑ ◗ ✑ ◗ ✑ ◗ ✑ ◗ ✑ d 0 ◗ 0 0 ✑ ◗ ✑ ◗ ✑ ✑ ◗ Since ∆ xy ≥ p x d 1 + (1 − p x ) d 0 p y = p x (1 − d 1 ) + (1 − p x ) d 0 we can write p y ≤ ∆ xy + p x (1 − 2 d 1 ) . Assume w.l.o.g. that p x ≤ 1 / 2. First let ∆ xy be such that ∆ xy + p x ≤ 1 / 2 or ∆ xy ≤ 1 / 2 − p x . Then we have p y ≤ ∆ xy + p x ≤ 1 / 2 , 13

  15. and hence ρ ≤ h ( p y ) − h ( p x ) ≤ h ( p x + ∆ xy ) − h ( p x ) . However ρ = h ( p x + ∆ xy ) − h ( p x ) is achievable with ∆ xy by taking ∆ xy d 1 = 0 and d 0 = . 1 − p x Note that the test channel is not symmetric and that ∆ xy ≤ 1 / 2 − p x d 0 = ≤ 1 / 2 . 1 − p x 1 − p x For ∆ xy + p x ≥ 1 / 2 the rate is bounded as ρ ≤ 1 − h ( p x ) but also achievable. 14

  16. Plot of rate-distortion region G re 0.35 0.3 0.25 0.2 RATE in BITS 0.15 0.1 0.05 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 DISTORTION Horizontal axis ∆ xy , vertical axis ρ , for p x = 0 . 2. Maximum embedding rate 1 − h (0 . 2) ≈ 0 . 278. 15

  17. Another perspective y N ( k ) y N ( k + 1) ✻ ✻ w ( k ) w ( k + 1) x N ( k ) x N ( k + 1) Consider a blocked system with blocks of length N . In block k message bits can be (noise-free) embedded with rate H ( Y | X ) and corresponding distortion. Then in block k + 1 message bits are embedded that allow for recon- struction of x N ( k ) given y N ( k ). This requires NH ( X | Y ) bits. Therefore the resulting embedding rate is = H ( Y | X ) − H ( X | Y ) R = H ( Y, X ) − H ( X ) − H ( X | Y ) = H ( Y ) − H ( X ) . 16

  18. IV. Robust and Reversible Embedding X N Y N Y N = e ( W, X N ) ✲ ✲ P s ( x ) ˆ W Z N ✻ ✲ ✲ ✲ ( ˆ W, ˆ X N 1 ) = d ( Z N ) P c ( z | y ) ✲ W ˆ X N 1 Messages: Pr { W = w } = 1 M for w ∈ { 1 , 2 , · · · , M } . Source (host): Pr { X N = x N } = Π n =1 ,N P s ( x n ) for x N ∈ X N . Channel: discrete memoryless {Y , P c ( z | y ) , Z} . X N 1 � = X N } . Error probability: P E = Pr { ˆ W � = W ∨ ˆ Rate: R = 1 N log 2 ( M ). Embedding distortion: D xy = E [ 1 n =1 ,N D xy ( X n , e n ( W, X N ))] for some � N distortion matrix { D xy ( x, y ) , x ∈ X , y ∈ Y} . 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend