co combining the k cn cnf and xor phase se transitions
play

Co Combining the k-CN CNF and XOR Phase se-Transitions Jeffrey M. - PowerPoint PPT Presentation

Co Combining the k-CN CNF and XOR Phase se-Transitions Jeffrey M. Dudek , Kuldeep S. Meel, & Moshe Y. Vardi Rice University Random k-CNF F Satis isfia iabil ilit ity [Franco and Paull, 1983] Definitio ion:Let CNF (,)


  1. Co Combining the k-CN CNF and XOR Phase se-Transitions Jeffrey M. Dudek , Kuldeep S. Meel, & Moshe Y. Vardi Rice University

  2. Random k-CNF F Satis isfia iabil ilit ity [Franco and Paull, 1983] β€’ Definitio ion:Let CNF 𝒍 (𝒐,𝒔) be a random variable denoting a uniformly chosen k- CNF formula with π‘œ variables and π‘œπ‘  k-CNF clauses. β€’ 𝒐 : The number of variables. β€’ 𝒍 : The width of every CNF clause. β€’ r : CNF clause density = Ratio of # of CNF clauses to # of variables. β€’ Ex: π‘Œ 1 ∨ Β¬π‘Œ 5 ∨ π‘Œ 6 β‹€ Β¬π‘Œ 1 ∨ π‘Œ 3 ∨ π‘Œ 5 is one possible value for CNF 3 (6,1/3) . β€’ Prob oblem: Fixing 𝑙 and 𝑠, what is the asymptotic probability that CNF 𝑙 (π‘œ, 𝑠) is satisfiableas π‘œ goes to infinity? Combining the k-CNF and XOR Phase-Transitions 2

  3. k-CNF F Ph Phase e Transit ition Probability that CNF 3 400,𝑠 is satisfiable 1 Probability of Satisfiability 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 r : 3-CNF Clause Density (#clauses / #variables) Combining the k-CNF and XOR Phase-Transitions 3

  4. k-CNF F Ph Phase e Transit ition Probability that CNF 3 400,𝑠 is satisfiable k-CN CNF Phase-Transition on Con onject cture: 1 For every 𝑙 β‰₯ 2 , there is a constant Probability of Satisfiability 0.8 𝑠 𝑙 > 0 such that: 0.6 0.4 0.2 𝑠 3 0 0 1 2 3 4 5 6 7 8 r : 3-CNF Clause Density (#clauses / #variables) Combining the k-CNF and XOR Phase-Transitions 4

  5. XOR Ph Phase-Transit itio ion [Creignou and DaudΓ©, 1999] β€’ Definitio ion: An XOR R clause is the exclusive-or of a set of variables, possibly including 1 as well. Ex Ex: π‘Œ 2 β¨π‘Œ 4 , 1β¨π‘Œ 1 β¨π‘Œ 2 β¨π‘Œ 7 β€’ Definitio ion: Let XOR(𝒐,𝒕) be a random variable denoting a uniformly chosen XOR formula with π‘œ variables and π‘œπ‘‘ XOR clauses. β€’ n : The number of variables. β€’ s : XOR clause density = Ratio of # of XOR clauses to # of variables. Prob oblem: Fixing 𝑑 , what is the asymptotic probability that XOR(π‘œ, 𝑑) is satisfiable as π‘œ goes to infinity? Combining the k-CNF and XOR Phase-Transitions 5

  6. XOR Ph Phase-Transit itio ion [Creignou and DaudΓ©, 1999] β€’ Definitio ion: An XOR R clause is the exclusive-or of a set of variables, possibly including 1 as well. Ex Ex: π‘Œ 2 β¨π‘Œ 4 , 1β¨π‘Œ 1 β¨π‘Œ 2 β¨π‘Œ 7 β€’ Definitio ion: Let XOR(𝒐,𝒕) be a random variable denoting a uniformly chosen XOR formula with π‘œ variables and π‘œπ‘‘ XOR clauses. β€’ n : The number of variables. β€’ s : XOR clause density = Ratio of # of XOR clauses to # of variables. Prob oblem: Fixing 𝑑 , what is the asymptotic probability that XOR(π‘œ, 𝑑) is satisfiable as π‘œ goes to infinity? π‘œβ†’βˆž Pr XOR(π‘œ, 𝑑) is sat. = α‰Š1 if 𝑑 < 1 lim 0 if 𝑑 > 1 Combining the k-CNF and XOR Phase-Transitions 6

  7. Combin ining k-CNF and XOR Together β€’ Motivation: Hashing-based sampling and counting algorithms use formulas with both k-CNF and XOR clauses. [Gomes et al. 2007], [Chakraborty et al. , 2013], [Ermon et al. 2013] β€’ β€’ Definition: A k-CNF-XOR formula is the conjunction of k-CNF and XOR clauses. β€’ Goal : Analyze the β€œbehavior” of k -CNF-XOR formulas. β€’ In this work we analyze the asymptotic satisfiability of random k-CNF-XOR formulas. Combining the k-CNF and XOR Phase-Transitions 7

  8. Random k-CNF-XOR Satisfia iabili ility β€’ Definitio ion:Let 𝝎 𝒍 (𝒐,𝒔,𝒕) be a random variable denoting CNF 𝑙 (π‘œ, 𝑠) ∧ XOR(π‘œ, 𝑑) β€’ i.e. the conjunction of π‘œπ‘  random k-CNF clauses and π‘œπ‘‘ random XOR clauses. β€’ n : The number of variables. β€’ k : The width of every CNF clause. β€’ r : k-CNF clause density. β€’ s : XOR clause density. Prob oblem: Fixing 𝑙 , 𝑠 , and 𝑑, what is the asymptotic probability that πœ” 𝑙 (π‘œ, 𝑠, 𝑑) is satisfiable as π‘œ goes to infinity? Combining the k-CNF and XOR Phase-Transitions 8

  9. k-CNF-XOR: Wh What Do Do We Ex Expec ect to See? e? Probability that πœ” 5 π‘œ, 𝑠, 𝑑 = CNF 5 (π‘œ, 𝑠) ∧ XOR(π‘œ,𝑑) is satisfiable s: XOR Clause Density ? 9 r: 5-CNF Clause Density

  10. Probability that πœ” 5 100,𝑠, 𝑑 = CNF 5 (100,𝑠) ∧ XOR(100,𝑑) is satisfiable s: XOR Clause Density r: 5-CNF Clause Density 10

  11. Theorem 1: 1: The k-CNF-XOR Ph Phas ase-Tran ansition Ex Exists πœ” 𝑙 π‘œ, 𝑠,𝑑 = CNF 𝑙 (π‘œ, 𝑠) ∧ XOR π‘œ,𝑑 is a random variable denoting a uniformly chosen k -CNF-XOR formula over n variables with CNF-density r and XOR-density s . Thm 1: For all 𝑙 β‰₯ 2 , there are functions 𝜚 𝑙 and constants 𝛽 𝑙 β‰₯ 1 such that random k-CNF-XOR formulas have a phase-transition located at 𝑑 = 𝜚 𝑙 (𝑠) when r < 𝛽 𝑙 . For all 𝑑 β‰₯ 0 , and 0 ≀ 𝑠 ≀ 𝛽 𝑙 (except for at most countably many 𝑠 ): What can we say about 𝜚 𝑙 ? Combining the k-CNF and XOR Phase-Transitions 11

  12. Theo eorem em 2: 2: Loca catin ing the e Ph Phase-Transit itio ion π‘œβ†’βˆž Pr πœ” 𝑙 (π‘œ, 𝑠, 𝑑) is sat. = 0 lim What can we say about 𝜚 𝑙 , the location of the k-CNF-XOR phase-transition? s: XOR Clause Density Thm2 : For 𝑙 β‰₯ 3 , we have linear upper and lower bounds on 𝜚 𝑙 (𝑠) . π‘œβ†’βˆž Pr πœ” 𝑙 (π‘œ, 𝑠, 𝑑) is sat. = 1 lim r: 5-CNF Clause Density Combining the k-CNF and XOR Phase-Transitions 12

  13. Conclu clusio ion formulas at k-CNF clause densities below 𝛽 𝑙 . β€’ There is a phase-transition in the satisfiability of random k-CNF-XOR β€’ We have some explicit bounds on the location. Future Work: βˆ— > 0 . β€’ Conjecture: There is a phase-transition in k-CNF-XOR formulas at all k-CNF β€’ Conjecture: 𝜚 𝑙 (𝑠) is linear for k-CNF clause densities below some 𝛽 𝑙 clause densities. β€’ How does the runtime of SAT solvers on k-CNF-XOR equations behave near the phase-transition? Combining the k-CNF and XOR Phase-Transitions 13

  14. Thanks! s: XOR Clause Density 14 r: 5-CNF Clause Density

  15. Citatio ions β€’ [Ermon et al. 2013] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimensionality: Discrete integration by hashing and optimization. In Proc. of ICML , pages 334 – 342, 2013. β€’ [Franco and Paull, 1983] J. Franco and M. Paull. Probabilistic analysis of the Davis – Putnam procedure for solving the satisfiability problem. Discrete Applied Math ematics, 5(1):77 – 87, 1983. β€’ [Chakraborty et al. 2013] S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable and nearly uniform generator of SAT witnesses. In Proc. of CAV , pages 608 – 623, 2013. β€’ [Creignou and DaudΓ©, 1999] N. Creignou and H. DaudΓ©. Satisfiability threshold for random xor-cnf formulas. Discrete Applied Mathematics , 9697:41 – 53, 1999. β€’ [Gomes et al. 2007] C.P. Gomes, A. Sabharwal, and B. Selman. Near-Uniform sampling of combinatorial spaces using XOR constraints. In Proc. of NIPS , pages 670 – 676, 2007 β€’ [Goerdt, 1996] A. Goerdt. A threshold for unsatisfiability . Journal of Computer and System Sciences, 53(3):469 – 486, 1996. Combining the k-CNF and XOR Phase-Transitions 15

  16. Runtime Behavio ior at the Transit itio ion Average satisfiability and solve time of 𝐺 3 200, 200𝑠 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 Clause Density r (#Clauses/#Variables) Probability of Satisfiability Solve Time Combining the k-CNF and XOR Phase-Transitions 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend