cm3
play

CM3 Mechanics of Materials www.ltas-cm3.ulg.ac.be Simulations of - PowerPoint PPT Presentation

Computational & Multiscale CM3 Mechanics of Materials www.ltas-cm3.ulg.ac.be Simulations of composite laminates inter- and intra-laminar failure using on a non-local mean-field damage-enhanced multi-scale method Ling Wu (CM3), L. Adam


  1. Computational & Multiscale CM3 Mechanics of Materials www.ltas-cm3.ulg.ac.be Simulations of composite laminates inter- and intra-laminar failure using on a non-local mean-field damage-enhanced multi-scale method Ling Wu (CM3), L. Adam (e-Xstream), B. Bidaine (e-Xstream), Ludovic Noels. (CM3) Experiments: F. Sket (IMDEA), J.M. Molina (IMDEA), A. Makradi (List) STOMMMAC The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013-03- 28) in the context of M-ERA.NET Joint Call 2014. SIMUCOMP The research has been funded by the Walloon Region under the agreement no 1017232 (CT-EUC 2010-10-12) in the context of the ERA-NET +, Matera + framework. EMMC15 7 - 9 September 2016, Brussels, Belgium CM3

  2. Content • Introduction – Failure of composite laminates – Multi-scale modelling – Mean-Field-Homogenization (MFH) • Micro-scale modelling – Incremental-Secant MFH – Damage-enhanced incremental-secant MFH • Multi-scale method for the failure analysis of composite laminates – Intra-laminar failure: Non-local damage-enhanced mean-field- homogenization – Inter-laminar failure: Hybrid DG/cohesive zone model – Experimental validation • Introduction of uncertainties – As a random field CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 2

  3. Failure of composite laminates • Difficulties Fiber rupture – Different involved mechanisms at different scales Debonding • Inter-laminar failure • Intra-laminar failure Pull out – Direct finite element simulation Delamination Bridging Matrix rupture On Micro-scale volume Not possible at structural scale CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 3

  4. Failure of composite laminates • Difficulties Fiber rupture – Different involved mechanisms at different scales Debonding • Inter-laminar failure • Intra-laminar failure Pull out – Direct finite element simulation is not Delamination Bridging Matrix rupture possible at structural scale – Continuum damage models do not represent accurately the intra-laminar failure • Damage propagation direction is not in agreement with experiments CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 4

  5. Failure of composite laminates • Difficulties Fiber rupture – Different involved mechanisms at different scales Debonding • Inter-laminar failure • Intra-laminar failure Pull out – Direct finite element simulation is not Delamination Bridging Matrix rupture possible at structural scale – Continuum damage models do not represent accurately the intra-laminar failure • Damage propagation direction is not in agreement with experiments • Solution: – Embed damage model in a multi-scale formulation – For computational efficiency: use of mean-field-homogenization – For macro cracks: using hybrid DG/Cohesive zone model CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 5

  6. Multi-scale modelling • Mean-Field-Homogenization – Macro-scale • FE model At one integration point e is know, s is sought • – Transition Downscaling: e is used as input of the MFH model • Upscaling: s is the output of the MFH model •  σ σ ε – Micro-scale  ε • Semi-analytical model • Predict composite meso-scale response • From components material models w I w 0 Mori and Tanaka 73, Hill 65, Ponte Casta ñ eda 91, Suquet 95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, … CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 7

  7. Mean-Field-Homogenization • Key principles w I – Based on the averaging of the fields σ inclusions 1   w 0 a a ( X ) d V V V – Meso-response composite ?  v  • v 1 From the volume ratios ( ) 0 I      σ σ σ σ σ σ v v v v w w 0 I 0 0 I I 0 I matrix      ε ε ε ε ε ε v v v v 0 w I w 0 0 I I ε 0 I • One more equation required e  ε : ε B I 0 – Difficulty: find the adequate relations    σ ε f I I   e  σ ε ? B f 0 0 e  ε : ε B I 0 CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 8

  8. Mean-Field-Homogenization • Key principles (2) – Linear materials w I σ • inclusions Materials behaviours σ  : ε w 0 C I I I σ  : ε C 0 0 0 composite ?   ε ε • Mori-Tanaka assumption 0 • Use Eshelby tensor   e  ε ε B I , C , C : I 0 I 0 matrix B e      1 1 [ I S : C : ( C C )] with 0 1 0 ε CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 9

  9. Mean-Field-Homogenization • Key principles (2) – Linear materials w I σ • inclusions Materials behaviours σ  : ε w 0 C I I I σ  : ε C 0 0 0 composite ?   ε ε • Mori-Tanaka assumption 0 • Use Eshelby tensor   e  ε ε B I , C , C : I 0 I 0 matrix B e      1 1 [ I S : C : ( C C )] with 0 1 0 ε σ alg – C Non-linear materials I • Define a Linear Comparison Composite (LCC) inclusions • Common approach: incremental tangent composite   alg e C    ε ε alg alg B I , C , C : σ 0 matrix: I 0 0 I 0 ε    ε ε ε I 0 CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 10

  10. Content • Micro-scale modelling – Incremental-Secant Mean-Field-Homogenization (MFH) – Damage-enhanced incremental-secant MFH CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 11

  11. Incremental-secant mean-field-homogenization σ • Material model – Elasto-plastic material   σ ε ε el pl • C : ( ) Stress tensor       s   σ σ eq Y • f , p R p 0 Yield surface  f     ε pl • N p N Plastic flow &  σ    σ ε alg • C : Linearization el C ε ε pl CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 12

  12. Incremental-secant mean-field-homogenization σ • New incremental-secant approach inclusions – Perform a virtual elastic unloading from previous solution composite • Composite material unloaded to reach the matrix stress-free state • Residual stress in components New Linear Comparison Composite (LCC) ε    ε ε unload ε unload unload I 0 CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 13

  13. Incremental-secant mean-field-homogenization σ • New incremental-secant approach inclusions – Perform a virtual elastic unloading from previous solution composite • Composite material unloaded to reach the matrix stress-free state • Residual stress in components New Linear Comparison Composite (LCC) ε – Apply MFH from unloaded state    ε ε unload ε unload unload I 0 • New strain increments (>0) σ inclusions      ε ε ε r unload I/0 I/0 I/0 composite • Use of secant operators   e    ε r Sr Sr ε r matrix B I , C , C : Sr C I 0 I 0 I Sr C 0 ε    ε r ε r ε r I 0 CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 14

  14. Incremental-secant mean-field-homogenization σ inclusions • Zero-incremental-secant method – Continuous fibres composite • 55 % volume fraction • Elastic matrix Sr C – I Elasto-plastic matrix – For inclusions with high hardening (elastic) • Model is too stiff Sr C 0 ε Transverse loading Longitudinal tension    ε r ε r ε r 3 12 I 0 FE (Jansson, 1992) 2.5 10 Sr C 0       s   σ σ eq Y f , p R p 0 8 2 s/s Y0 s/s Y0 σ eq 1.5 6 is underestimated FE (Jansson, 1992) 1 4 Sr C 0 0.5 2 0 0 0 0.003 0.006 0.009 0 0.002 0.004 e e CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 16

  15. Incremental-secant mean-field-homogenization σ inclusions • Zero-incremental-secant method (2) – Continuous fibres composite • 55 % volume fraction • Elastic matrix Sr C – I Elasto-plastic matrix – Secant model in the matrix • Modified if negative residual stress Sr C 0 ε Transverse loading Longitudinal tension    ε r ε r ε r 3 12 I 0 FE (Jansson, 1992) σ 2.5 10 Sr C 0 inclusions S0 C 0 8 2 s/s Y0 s/s Y0 composite 1.5 6 FE (Jansson, matrix Sr C 1992) I 1 4 Sr C 0 S0 C 0 0.5 2 S0 C 0 ε 0 0 0 0.003 0.006 0.009 0 0.002 0.004    ε r ε r ε e r e I 0 CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 17

  16. Incremental-secant mean-field-homogenization • .100 Verification of the method e 13  e 23 – Spherical inclusions .080 e 33 2 e 11 2 e 22 • 17 % volume fraction .060 e • Elastic – Elastic-perfectly-plastic matrix .040 – Non-proportional loading .020 .000 0 10 20 30 40 t FFT FE (Lahellec et al., 2013) MFH, incr. tg. 120 MFH, var. (Lahellec et al., 2013) 30 80 MFH, incr. sec. s 13 [Mpa] s 33 [Mpa] 5 40 -20 0 FFT FE (Lahellec et al., 2013) MFH, incr. tg. -45 -40 MFH, var. (Lahellec et al., 2013) MFH, incr. sec. -70 -80 0 10 20 30 40 0 10 20 30 40 t t CM3 EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend