classification of modular categories
play

Classification of Modular Categories Csar Galindo Universidad de - PowerPoint PPT Presentation

Main results Classification of Modular Categories Csar Galindo Universidad de los Andes Sptima escuela de fsica matemtica UniAndes, May 26 Csar Galindo Main results Why Braided Fusion Categories? Mathematics: Csar Galindo Main


  1. Main results Definition of fusion category in coordinates Fusion rules Let L = { X 1 = 1 , X 2 , . . . , X n } be a set of representatives of isomorphism classes of simple objects. There is an involution ∗ : L → L such that 1 ∗ = 1 . k N k X i ⊗ X j = � ij X k , so we have a colection of non-negative integres N k ij , for every i , j , k ∈ { 1 , . . . , n } and satisfy César Galindo

  2. Main results Definition of fusion category in coordinates Fusion rules Let L = { X 1 = 1 , X 2 , . . . , X n } be a set of representatives of isomorphism classes of simple objects. There is an involution ∗ : L → L such that 1 ∗ = 1 . k N k X i ⊗ X j = � ij X k , so we have a colection of non-negative integres N k ij , for every i , j , k ∈ { 1 , . . . , n } and satisfy N b 1 a = δ ab = N b a 1 N 1 ab = δ a ∗ b ae ′ N e ′ N u � N e ab N u � N u abc := ec = bc e e ′

  3. Main results Definition of fusion category in coordinates Fusion rules Let L = { X 1 = 1 , X 2 , . . . , X n } be a set of representatives of isomorphism classes of simple objects. There is an involution ∗ : L → L such that 1 ∗ = 1 . k N k X i ⊗ X j = � ij X k , so we have a colection of non-negative integres N k ij , for every i , j , k ∈ { 1 , . . . , n } and satisfy N b 1 a = δ ab = N b a 1 ae ′ N e ′ N u � N e ab N u � N u abc := ec = bc e e ′

  4. Main results Definition of fusion category in coordinates Fusion rules Let L = { X 1 = 1 , X 2 , . . . , X n } be a set of representatives of isomorphism classes of simple objects. There is an involution ∗ : L → L such that 1 ∗ = 1 . k N k X i ⊗ X j = � ij X k , so we have a colection of non-negative integres N k ij , for every i , j , k ∈ { 1 , . . . , n } and satisfy N b 1 a = δ ab = N b a 1 N 1 ab = δ a ∗ b ae ′ N e ′ N u � N e ab N u � N u abc := ec = bc e e ′ César Galindo

  5. Main results F-matrices (6j-symbols) Without loss of generality we can suppose that ( a ⊗ b ) ⊗ c = a ⊗ ( b ⊗ c ) for all a , b , c , d ∈ L . César Galindo

  6. Main results F-matrices (6j-symbols) Without loss of generality we can suppose that ( a ⊗ b ) ⊗ c = a ⊗ ( b ⊗ c ) for all a , b , c , d ∈ L . F-matrices Define F d abc : Hom C ( a ⊗ b ⊗ c , d ) → Hom C ( a ⊗ b ⊗ c , d ) f �→ f ◦ a a , b , c César Galindo

  7. Main results F-matrices (6j-symbols) Without loss of generality we can suppose that ( a ⊗ b ) ⊗ c = a ⊗ ( b ⊗ c ) for all a , b , c , d ∈ L . F-matrices Define F d abc : Hom C ( a ⊗ b ⊗ c , d ) → Hom C ( a ⊗ b ⊗ c , d ) f �→ f ◦ a a , b , c The set of matrices { F d abc ∈ U ( N d abc ) | a , b , c , d ∈ L } is called the F-matrices and they satisfy the pentagonal identity (pentagon axiom) . César Galindo

  8. Main results Examples Pointed fusion categories, C ( G , ω ) César Galindo

  9. Main results Examples Pointed fusion categories, C ( G , ω ) L = G (a finite group) César Galindo

  10. Main results Examples Pointed fusion categories, C ( G , ω ) L = G (a finite group) fusion rules are the product in G César Galindo

  11. Main results Examples Pointed fusion categories, C ( G , ω ) L = G (a finite group) fusion rules are the product in G a , b , c = ω ( a , b , c ) δ abc , d , so is a function ω : G × 3 → U ( 1 ) F d César Galindo

  12. Main results Examples Pointed fusion categories, C ( G , ω ) L = G (a finite group) fusion rules are the product in G a , b , c = ω ( a , b , c ) δ abc , d , so is a function ω : G × 3 → U ( 1 ) F d Pentagon equation is exactly 3-cocycle condition of group cohomology: ω ( a , b , c ) ω ( b , c , d ) ω ( a , bc , d ) = ω ( ab , c , d ) ω ( a , b , cd ) César Galindo

  13. Main results Examples Fibonnaci theory César Galindo

  14. Main results Examples Fibonnaci theory L = { 1 , x } César Galindo

  15. Main results Examples Fibonnaci theory L = { 1 , x } fusion rules x 2 = 1 + x ( N 1 xx = N x xx = 1) César Galindo

  16. Main results Examples Fibonnaci theory L = { 1 , x } fusion rules x 2 = 1 + x ( N 1 xx = N x xx = 1) � F x xxx = César Galindo

  17. Main results Examples Fibonnaci theory L = { 1 , x } fusion rules x 2 = 1 + x ( N 1 xx = N x xx = 1) φ − 1 φ − 1 / 2 � � F x xxx = φ − 1 / 2 φ − 1 César Galindo

  18. Main results Examples Fibonnaci theory L = { 1 , x } fusion rules x 2 = 1 + x ( N 1 xx = N x xx = 1) φ − 1 φ − 1 / 2 � � F x xxx = φ − 1 / 2 φ − 1 Not every fusion rules admit a set of F -matrices César Galindo

  19. Main results Examples Fibonnaci theory L = { 1 , x } fusion rules x 2 = 1 + x ( N 1 xx = N x xx = 1) φ − 1 φ − 1 / 2 � � F x xxx = φ − 1 / 2 φ − 1 Not every fusion rules admit a set of F -matrices As an example the fusion rules: L k = { 1 , x } x 2 = 1 + kx ( N 1 xx = N x xx = k ), k ∈ Z > 0 define a fusion category if and only if k = 1 (Victor Ostrik). César Galindo

  20. Main results Examples Ising theory L = { 1 , σ, ψ } fusion rules: σ 2 = 1 + ψ, ψ 2 = 1 , ψσ = σψ = σ . � 1 � 1 ψσψ = F ψ F σ 1 , F σ σσσ = σψσ = − 1. √ − 1 2 1 Remarks The ising fusion rules has two possible realization (Isinig or � 1 � 1 σσσ = − 1 Mayorama fermion) F σ . √ 1 − 1 2 Ising categories are particular cases of a more general familily called Tambara-Yamagami categories. César Galindo

  21. Main results Braided fusion category in coordinates If ( C , c ) is a braided fusion, without loss of generality we can suppose that a ⊗ b = a ⊗ b for all a , b ∈ L . César Galindo

  22. Main results Braided fusion category in coordinates If ( C , c ) is a braided fusion, without loss of generality we can suppose that a ⊗ b = a ⊗ b for all a , b ∈ L . R-matrices Define R c a , b : Hom C ( a ⊗ b , c ) → Hom C ( b ⊗ a , c ) f �→ f ◦ c a , b César Galindo

  23. Main results Braided fusion category in coordinates If ( C , c ) is a braided fusion, without loss of generality we can suppose that a ⊗ b = a ⊗ b for all a , b ∈ L . R-matrices Define R c a , b : Hom C ( a ⊗ b , c ) → Hom C ( b ⊗ a , c ) f �→ f ◦ c a , b The set of matrices { R c a , b ∈ U ( N c a , b ) | a , b , c ∈ L } is called the R-matrices and they satisfy the hexagonal identities (hexagon axioms) . César Galindo

  24. Main results Example Pointed braided fusion category César Galindo

  25. Main results Example Pointed braided fusion category If C ( G , ω ) has a braid structure then G is abelian R z xy = c ( x , y ) δ xy , z , so is a function c : G × G → U ( 1 ) Hexagonal equation is exacly the abelian 3-cocycle condition ω ( y , z , x ) c ( x , yz ) ω ( x , y , z ) = c ( x , z ) ω ( y , x , z ) c ( x , y ) ω ( z , x , y ) − 1 c ( xy , z ) ω ( x , y , z ) − 1 = c ( x , z ) ω ( x , z , y ) − 1 c ( y , z ) . César Galindo

  26. Main results Examples R-matrices for Fibonacci theory R 1 ττ = e − 4 π i / 5 , R τ ττ = e 3 π i / 5 . César Galindo

  27. Main results Examples R-matrices for Fibonacci theory R 1 ττ = e − 4 π i / 5 , R τ ττ = e 3 π i / 5 . R-matrices for Ising theory R 1 ψψ = − 1 , R σ σψ = i , R 1 σσ = e − π i / 8 , R ψ σσ = e 3 π i / 8 The Ising category admist tree (non-equivalent) R-matrices. César Galindo

  28. Main results More examples: the Drinfeld center Let C be a (strict) tensor category and let X ∈ C . Definition A half braiding c − , X : � ⊗ X → X ⊗ � for X is a natural isomorphism such that c Y ⊗ Z , X = ( c Y , X ⊗ id Z )( id Y ⊗ c Z , X ) , for all Y , Z ∈ C . César Galindo

  29. Main results More examples: the Drinfeld center The Drinfeld center Z ( C ) of C is the following braided fusion category César Galindo

  30. Main results More examples: the Drinfeld center The Drinfeld center Z ( C ) of C is the following braided fusion category objects: pairs ( X , c − , X ) , where X ∈ C and c − , X is a half braiding for X , César Galindo

  31. Main results More examples: the Drinfeld center The Drinfeld center Z ( C ) of C is the following braided fusion category objects: pairs ( X , c − , X ) , where X ∈ C and c − , X is a half braiding for X , morphisms: Hom Z ( C ) (( X , c − , X ) , ( Y , c − , Y )) = { f ∈ Hom C ( X , Y ) : ( id W ⊗ f ) c W , X = c W , Y ( id W ⊗ f ) , ∀ W ∈ C} , César Galindo

  32. Main results More examples: the Drinfeld center The Drinfeld center Z ( C ) of C is the following braided fusion category objects: pairs ( X , c − , X ) , where X ∈ C and c − , X is a half braiding for X , morphisms: Hom Z ( C ) (( X , c − , X ) , ( Y , c − , Y )) = { f ∈ Hom C ( X , Y ) : ( id W ⊗ f ) c W , X = c W , Y ( id W ⊗ f ) , ∀ W ∈ C} , tensor product: ( X , c − , X ) ⊗ ( Y , c − , Y ) = ( X ⊗ Y , c − , X ⊗ Y ) , where c − , X ⊗ Y = ( id X ⊗ c − , Y )( c − , X ⊗ id Y ) , César Galindo

  33. Main results More examples: the Drinfeld center The Drinfeld center Z ( C ) of C is the following braided fusion category objects: pairs ( X , c − , X ) , where X ∈ C and c − , X is a half braiding for X , morphisms: Hom Z ( C ) (( X , c − , X ) , ( Y , c − , Y )) = { f ∈ Hom C ( X , Y ) : ( id W ⊗ f ) c W , X = c W , Y ( id W ⊗ f ) , ∀ W ∈ C} , tensor product: ( X , c − , X ) ⊗ ( Y , c − , Y ) = ( X ⊗ Y , c − , X ⊗ Y ) , where c − , X ⊗ Y = ( id X ⊗ c − , Y )( c − , X ⊗ id Y ) , braiding: σ ( X , c − , X ) , ( Y , c − , Y ) = c X , Y . César Galindo

  34. Main results More examples: the Drinfeld center The Drinfeld center Z ( C ) of C is the following braided fusion category objects: pairs ( X , c − , X ) , where X ∈ C and c − , X is a half braiding for X , morphisms: Hom Z ( C ) (( X , c − , X ) , ( Y , c − , Y )) = { f ∈ Hom C ( X , Y ) : ( id W ⊗ f ) c W , X = c W , Y ( id W ⊗ f ) , ∀ W ∈ C} , tensor product: ( X , c − , X ) ⊗ ( Y , c − , Y ) = ( X ⊗ Y , c − , X ⊗ Y ) , where c − , X ⊗ Y = ( id X ⊗ c − , Y )( c − , X ⊗ id Y ) , braiding: σ ( X , c − , X ) , ( Y , c − , Y ) = c X , Y . Theorem (Muger) The Drinfeld center Z ( C ) is modular if C is a spherical fusion category over C . César Galindo

  35. Main results Frobenius-Perron dimensions Set C be a fusion category. César Galindo

  36. Main results Frobenius-Perron dimensions Set C be a fusion category. Let Irr ( C )= { X 0 = 1 , X 1 , . . . , X n } denote the set of isomorphism classes of simple objects in C . César Galindo

  37. Main results Frobenius-Perron dimensions Set C be a fusion category. Let Irr ( C )= { X 0 = 1 , X 1 , . . . , X n } denote the set of isomorphism classes of simple objects in C . The rank of C is the cardinality of the set Irr ( C ) . César Galindo

  38. Main results Frobenius-Perron dimensions Set C be a fusion category. Let Irr ( C )= { X 0 = 1 , X 1 , . . . , X n } denote the set of isomorphism classes of simple objects in C . The rank of C is the cardinality of the set Irr ( C ) . Z ∈ Irr ( C ) N Z Fusion rules: X ⊗ Y ≃ � X , Y Z ( X , Y ∈ Irr ( C ) ). César Galindo

  39. Main results Frobenius-Perron dimensions Set C be a fusion category. Let Irr ( C )= { X 0 = 1 , X 1 , . . . , X n } denote the set of isomorphism classes of simple objects in C . The rank of C is the cardinality of the set Irr ( C ) . Z ∈ Irr ( C ) N Z Fusion rules: X ⊗ Y ≃ � X , Y Z ( X , Y ∈ Irr ( C ) ). The Frobenius-Perron dimension FPdim X ∈ R + of X ∈ C is the largest nonnegative eigenvalue of the matrix ( N Z X , Y ) Y , Z ∈ Irr ( C ) (matrix of left multiplication by X w.r.t ⊗ ). César Galindo

  40. Main results Frobenius-Perron dimensions Set C be a fusion category. Let Irr ( C )= { X 0 = 1 , X 1 , . . . , X n } denote the set of isomorphism classes of simple objects in C . The rank of C is the cardinality of the set Irr ( C ) . Z ∈ Irr ( C ) N Z Fusion rules: X ⊗ Y ≃ � X , Y Z ( X , Y ∈ Irr ( C ) ). The Frobenius-Perron dimension FPdim X ∈ R + of X ∈ C is the largest nonnegative eigenvalue of the matrix ( N Z X , Y ) Y , Z ∈ Irr ( C ) (matrix of left multiplication by X w.r.t ⊗ ). The Frobenius-Perron dimension of C is X ∈ Irr ( C ) ( FPdim X ) 2 . FPdim C = � César Galindo

  41. Main results More definitions A fusion category C is pointed if all the simple objects are invertible ⇔ FPdim X = 1. César Galindo

  42. Main results More definitions A fusion category C is pointed if all the simple objects are invertible ⇔ FPdim X = 1. A fusion category C is called integral if FPdim X ∈ Z + , ∀ X ∈ C ( ⇔ C ≃ Rep H , H semisimple quasi-Hopf [ENO]). César Galindo

  43. Main results More definitions A fusion category C is pointed if all the simple objects are invertible ⇔ FPdim X = 1. A fusion category C is called integral if FPdim X ∈ Z + , ∀ X ∈ C ( ⇔ C ≃ Rep H , H semisimple quasi-Hopf [ENO]). A fusion category C is weakly integral if FPdim C ∈ Z . César Galindo

  44. Main results Example: Tambara-Yamagami categories Data: an abelian finite group G , César Galindo

  45. Main results Example: Tambara-Yamagami categories Data: an abelian finite group G , a non-degenerate symmetric bicharacter χ : G × G → k × , César Galindo

  46. Main results Example: Tambara-Yamagami categories Data: an abelian finite group G , a non-degenerate symmetric bicharacter χ : G × G → k × , an element τ ∈ C s.t. | G | τ 2 = 1. César Galindo

  47. Main results Example: Tambara-Yamagami categories Data: an abelian finite group G , a non-degenerate symmetric bicharacter χ : G × G → k × , an element τ ∈ C s.t. | G | τ 2 = 1. Tambara-Yamagami category T Y ( G , χ, τ ) : is the semisimple category with César Galindo

  48. Main results Example: Tambara-Yamagami categories Data: an abelian finite group G , a non-degenerate symmetric bicharacter χ : G × G → k × , an element τ ∈ C s.t. | G | τ 2 = 1. Tambara-Yamagami category T Y ( G , χ, τ ) : is the semisimple category with Irr ( T Y ( G , χ, τ )) = G � { X } , X / ∈ G . César Galindo

  49. Main results Example: Tambara-Yamagami categories Data: an abelian finite group G , a non-degenerate symmetric bicharacter χ : G × G → k × , an element τ ∈ C s.t. | G | τ 2 = 1. Tambara-Yamagami category T Y ( G , χ, τ ) : is the semisimple category with Irr ( T Y ( G , χ, τ )) = G � { X } , X / ∈ G . Fusion rules a ⊗ b = ab , X ⊗ X = � a ∈ G a , a ⊗ X = X . César Galindo

  50. Main results Example: Tambara-Yamagami categories Data: an abelian finite group G , a non-degenerate symmetric bicharacter χ : G × G → k × , an element τ ∈ C s.t. | G | τ 2 = 1. Tambara-Yamagami category T Y ( G , χ, τ ) : is the semisimple category with Irr ( T Y ( G , χ, τ )) = G � { X } , X / ∈ G . Fusion rules a ⊗ b = ab , X ⊗ X = � a ∈ G a , a ⊗ X = X . Duality a ∗ = a − 1 and X ∗ = X . César Galindo

  51. Main results Example: Tambara-Yamagami categories Remark � FPdim X = | G | and FPdim T Y ( G , χ, τ ) = 2 | G | � weakly integral but not necessarily integral. César Galindo

  52. Main results Example: Tambara-Yamagami categories Remark � FPdim X = | G | and FPdim T Y ( G , χ, τ ) = 2 | G | � weakly integral but not necessarily integral. T Y ( G , χ, τ ) admits a braiding ⇔ G is an elementary abelian 2 -group. César Galindo

  53. Main results Example: Tambara-Yamagami categories Remark � FPdim X = | G | and FPdim T Y ( G , χ, τ ) = 2 | G | � weakly integral but not necessarily integral. T Y ( G , χ, τ ) admits a braiding ⇔ G is an elementary abelian 2 -group. Example Ising categories I are Tambara-Yamagami categories with G = < a > ≃ Z 2 . César Galindo

  54. Main results Example: Tambara-Yamagami categories Remark � FPdim X = | G | and FPdim T Y ( G , χ, τ ) = 2 | G | � weakly integral but not necessarily integral. T Y ( G , χ, τ ) admits a braiding ⇔ G is an elementary abelian 2 -group. Example Ising categories I are Tambara-Yamagami categories with G = < a > ≃ Z 2 . In this case, X ⊗ 2 = 1 ⊕ a . César Galindo

  55. Main results Example: Tambara-Yamagami categories Remark � FPdim X = | G | and FPdim T Y ( G , χ, τ ) = 2 | G | � weakly integral but not necessarily integral. T Y ( G , χ, τ ) admits a braiding ⇔ G is an elementary abelian 2 -group. Example Ising categories I are Tambara-Yamagami categories with G = < a > ≃ Z 2 . In this case, X ⊗ 2 = 1 ⊕ a . Then, √ FPdim X = 2 and FPdim T Y = 4. César Galindo

  56. Main results Example: Tambara-Yamagami categories Remark � FPdim X = | G | and FPdim T Y ( G , χ, τ ) = 2 | G | � weakly integral but not necessarily integral. T Y ( G , χ, τ ) admits a braiding ⇔ G is an elementary abelian 2 -group. Example Ising categories I are Tambara-Yamagami categories with G = < a > ≃ Z 2 . In this case, X ⊗ 2 = 1 ⊕ a . Then, √ FPdim X = 2 and FPdim T Y = 4. Moreover, I is modular . César Galindo

  57. Main results Frame problem Recall that the frame problem is: César Galindo

  58. Main results Frame problem Recall that the frame problem is: Problem Classify modular categories. César Galindo

  59. Main results Frame problem Recall that the frame problem is: Problem Classify modular categories. Hard problem! Different approaches, for example: César Galindo

  60. Main results Frame problem Recall that the frame problem is: Problem Classify modular categories. Hard problem! Different approaches, for example: low rank MC, César Galindo

  61. Main results Frame problem Recall that the frame problem is: Problem Classify modular categories. Hard problem! Different approaches, for example: low rank MC, weakly integral MC, César Galindo

  62. Main results Frame problem Recall that the frame problem is: Problem Classify modular categories. Hard problem! Different approaches, for example: low rank MC, weakly integral MC, MC of a given FPdim. César Galindo

  63. Main results Rank finiteness for braided fusion categories Theorem (Bruillard, Ng, Rowell, Wang) 2013 There are finitely many modular categories of a given rank r. Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang) 2015 There are finitely many braided fusion categories of a given rank r . César Galindo

  64. Main results Known results: Rank C ≤ 5 Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5. César Galindo

  65. Main results Known results: Rank C ≤ 5 Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5. Theorem If C is a modular category with 2 ≤ Rank C ≤ 5 it is Grothendieck equivalent to one of the following: César Galindo

  66. Main results Known results: Rank C ≤ 5 Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5. Theorem If C is a modular category with 2 ≤ Rank C ≤ 5 it is Grothendieck equivalent to one of the following: PSU ( 2 ) 3 (Fibonacci), SU ( 2 ) 1 (pointed), César Galindo

  67. Main results Known results: Rank C ≤ 5 Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5. Theorem If C is a modular category with 2 ≤ Rank C ≤ 5 it is Grothendieck equivalent to one of the following: PSU ( 2 ) 3 (Fibonacci), SU ( 2 ) 1 (pointed), PSU ( 2 ) 5 , SU ( 2 ) 2 (Ising), SU ( 3 ) 1 (pointed), César Galindo

  68. Main results Known results: Rank C ≤ 5 Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5. Theorem If C is a modular category with 2 ≤ Rank C ≤ 5 it is Grothendieck equivalent to one of the following: PSU ( 2 ) 3 (Fibonacci), SU ( 2 ) 1 (pointed), PSU ( 2 ) 5 , SU ( 2 ) 2 (Ising), SU ( 3 ) 1 (pointed), PSU ( 2 ) 7 , SU ( 2 ) 3 , SU ( 4 ) 1 , products, César Galindo

  69. Main results Known results: Rank C ≤ 5 Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5. Theorem If C is a modular category with 2 ≤ Rank C ≤ 5 it is Grothendieck equivalent to one of the following: PSU ( 2 ) 3 (Fibonacci), SU ( 2 ) 1 (pointed), PSU ( 2 ) 5 , SU ( 2 ) 2 (Ising), SU ( 3 ) 1 (pointed), PSU ( 2 ) 7 , SU ( 2 ) 3 , SU ( 4 ) 1 , products, PSU ( 2 ) 9 , SU ( 2 ) 4 , SU ( 5 ) 1 , PSU ( 3 ) 4 . César Galindo

  70. Main results Known results: FPdim C fixed Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P , Rowell help to advance in the classification program. César Galindo

  71. Main results Known results: FPdim C fixed Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P , Rowell help to advance in the classification program. C MC, FPdim C ∈ { p n , pq , pqr , pq 2 , pq 3 , pq 4 , pq 5 } César Galindo

  72. Main results Known results: FPdim C fixed Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P , Rowell help to advance in the classification program. C MC, FPdim C ∈ { p n , pq , pqr , pq 2 , pq 3 , pq 4 , pq 5 } � group-theoretical. César Galindo

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend