chosen ciphertext security from subset sum
play

Chosen-Ciphertext Security from Subset Sum PKC 2016, 07.03.2016 - PowerPoint PPT Presentation

Chosen-Ciphertext Security from Subset Sum PKC 2016, 07.03.2016 Sebastian Faust 1 Daniel Masny 1 Daniele Venturi 2 1 Ruhr Universitt Bochum 2 Sapienza University of Rome 1 Outline 1 Our Contribution 2 Subset Sum 3 CCA secure PKE 4 Tag-Based


  1. Chosen-Ciphertext Security from Subset Sum PKC 2016, 07.03.2016 Sebastian Faust 1 Daniel Masny 1 Daniele Venturi 2 1 Ruhr Universität Bochum 2 Sapienza University of Rome 1

  2. Outline 1 Our Contribution 2 Subset Sum 3 CCA secure PKE 4 Tag-Based Encryption

  3. Our Contribution State of the Art ▶ CPA-secure Public Key Encryption (PKE) from Subset Sum [LPS10]. 3

  4. Our Contribution State of the Art ▶ CPA-secure Public Key Encryption (PKE) from Subset Sum [LPS10]. ▶ The security decreases with the message length. 3

  5. Our Contribution State of the Art ▶ CPA-secure Public Key Encryption (PKE) from Subset Sum [LPS10]. ▶ The security decreases with the message length. ▶ Solution: split message (not possible for CCA) 3

  6. Our Contribution State of the Art ▶ CPA-secure Public Key Encryption (PKE) from Subset Sum [LPS10]. ▶ The security decreases with the message length. ▶ Solution: split message (not possible for CCA) Our Results ▶ We construct a CCA-secure PKE from Subset Sum (using [MP12]). 3

  7. Our Contribution State of the Art ▶ CPA-secure Public Key Encryption (PKE) from Subset Sum [LPS10]. ▶ The security decreases with the message length. ▶ Solution: split message (not possible for CCA) Our Results ▶ We construct a CCA-secure PKE from Subset Sum (using [MP12]). ▶ The security of our PKE does not decrease with the message length. 3

  8. Outline 1 Our Contribution 2 Subset Sum 3 CCA secure PKE 4 Tag-Based Encryption

  9. Subset Sum Subset Sum ( n , µ ) : Find secret s ∈ { 0 , 1 } n , 5

  10. Subset Sum Subset Sum ( n , µ ) : Find secret s ∈ { 0 , 1 } n , given ( A := ( a 1 , . . . , a n ) , t := s 1 a 1 + · · · + s n a n ) ∈ Z n µ × Z µ . 5

  11. Subset Sum Subset Sum ( n , µ ) : Find secret s ∈ { 0 , 1 } n , given ( A := ( a 1 , . . . , a n ) , t := s 1 a 1 + · · · + s n a n ) ∈ Z n µ × Z µ . Hardness of Subset Sum n δ := log µ : n Θ( 1 Θ( log 2 n ) n ) Θ( 1 ) 5

  12. Subset Sum Subset Sum ( n , µ ) : Find secret s ∈ { 0 , 1 } n , given ( A := ( a 1 , . . . , a n ) , t := s 1 a 1 + · · · + s n a n ) ∈ Z n µ × Z µ . Hardness of Subset Sum n δ := log µ : n Θ( 1 1 Θ( log 2 n ) n ) Θ( log n ) Θ( 1 ) 1 ▶ We focus on δ = Θ( log n ) . 5

  13. Subset Sum Subset Sum ( n , µ ) : Find secret s ∈ { 0 , 1 } n , given ( A := ( a 1 , . . . , a n ) , t := s 1 a 1 + · · · + s n a n ) ∈ Z n µ × Z µ . Hardness of Subset Sum n δ := log µ : n Θ( 1 1 Θ( log 2 n ) n ) Θ( log n ) Θ( 1 ) 1 ▶ We focus on δ = Θ( log n ) . Decisional Subset Sum [IN96]: ( A , t ) is hard to distinguish from uniform. 5

  14. “LWE” form of Subset Sum [LPS10] ( A , t ) ∈ Z n µ × Z µ → Z m × n × Z m q q 6

  15. “LWE” form of Subset Sum [LPS10] ( A , t ) ∈ Z n µ × Z µ → Z m × n × Z m q q Let µ = q m , 6

  16. “LWE” form of Subset Sum [LPS10] ( A , t ) ∈ Z n µ × Z µ → Z m × n × Z m q q Let µ = q m , then we can represent a ∈ Z µ as value in Z m q : 6

  17. “LWE” form of Subset Sum [LPS10] ( A , t ) ∈ Z n µ × Z µ → Z m × n × Z m q q Let µ = q m , then we can represent a ∈ Z µ as value in Z m q : a = a m · q m − 1 + . . . + a 1 · q 0 � = ( a m , . . . , a 1 ) T ∈ Z m q 6

  18. “LWE” form of Subset Sum [LPS10] ( A , t ) ∈ Z n µ × Z µ → Z m × n × Z m q q Let µ = q m , then we can represent a ∈ Z µ as value in Z m q : a = a m · q m − 1 + . . . + a 1 · q 0 � = ( a m , . . . , a 1 ) T ∈ Z m q 6

  19. “LWE” form of Subset Sum [LPS10] ( A , t ) ∈ Z n µ × Z µ → Z m × n × Z m q q Let µ = q m , then we can represent a ∈ Z µ as value in Z m q : a = a m · q m − 1 + . . . + a 1 · q 0 � = ( a m , . . . , a 1 ) T ∈ Z m q Therefore   a m a m · · · 1 n   . ... . . .  ∈ Z m × n A = ( a 1 , . . . , a n ) � =  . . q a 1 a 1 · · · n 1 6

  20. “LWE” form of Subset Sum [LPS10] t = s 1 a 1 + · · · + s n a n ∈ Z q m , 7

  21. “LWE” form of Subset Sum [LPS10] t = s 1 a 1 + · · · + s n a n ∈ Z q m ,       a m a m e m ( A , s ) 1 n       . . . . . .       . . . ∈ Z m = ̸ � s 1   · · · + s n     +   q ,     a 2 a 2 e 2 ( A , s ) 1 n a 1 a 1 e 1 ( A , s ) 1 n 7

  22. “LWE” form of Subset Sum [LPS10] t = s 1 a 1 + · · · + s n a n ∈ Z q m ,       a m a m e m ( A , s ) 1 n       . . . . . .       . . . ∈ Z m = � s 1   · · · + s n    +    q ,     a 2 a 2 e 2 ( A , s ) 1 n a 1 a 1 e 1 ( A , s ) 1 n where e ( A , s ) is a vector of carries. 7

  23. “LWE” form of Subset Sum [LPS10] t = s 1 a 1 + · · · + s n a n ∈ Z q m ,       a m a m e m ( A , s ) 1 n       . . . . . .       . . . ∈ Z m = � s 1   · · · + s n    +    q ,     a 2 a 2 e 2 ( A , s ) 1 n a 1 a 1 e 1 ( A , s ) 1 n where e ( A , s ) is a vector of carries. 7

  24. “LWE” form of Subset Sum [LPS10] t = s 1 a 1 + · · · + s n a n ∈ Z q m ,       a m a m e m ( A , s ) 1 n       . . . . . .       . . . ∈ Z m = � s 1   · · · + s n    +    q ,     a 2 a 2 e 2 ( A , s ) 1 n a 1 a 1 e 1 ( A , s ) 1 n where e ( A , s ) is a vector of carries. 7

  25. “LWE” form of Subset Sum [LPS10] t = s 1 a 1 + · · · + s n a n ∈ Z q m ,       a m a m e m ( A , s ) 1 n       . . . . . .       . . . ∈ Z m = � s 1    · · · + s n    +   q ,     a 2 a 2 e 2 ( A , s ) 1 n a 1 a 1 e 1 ( A , s ) 1 n where e ( A , s ) is a vector of carries. From now on, ( A , t = As + e ( A , s )) ∈ Z m × n × Z m q ( m samples). q 7

  26. Many Samples from Subset Sum µ = q m 8

  27. Many Samples from Subset Sum µ = q m ⇒ m samples 8

  28. Many Samples from Subset Sum µ = q m ⇒ m samples ⇒ δ = n m · log q (easy for e.g. m = n 2 ) n log µ = 8

  29. Many Samples from Subset Sum µ = q m ⇒ m samples ⇒ δ = n m · log q (easy for e.g. m = n 2 ) n log µ = From m to ℓ samples: ▶ given ( A , t ) ∈ Z m × n × Z m q q 8

  30. Many Samples from Subset Sum µ = q m ⇒ m samples ⇒ δ = n m · log q (easy for e.g. m = n 2 ) n log µ = From m to ℓ samples: ▶ given ( A , t ) ∈ Z m × n × Z m q q ▶ R ← D ℓ × m , where D has sufficient min-entropy. q 8

  31. Many Samples from Subset Sum µ = q m ⇒ m samples ⇒ δ = n m · log q (easy for e.g. m = n 2 ) n log µ = From m to ℓ samples: ▶ given ( A , t ) ∈ Z m × n × Z m q q ▶ R ← D ℓ × m , where D has sufficient min-entropy. q ▶ output ( RA , R t = RAs + Re ( A , s )) ∈ Z ℓ × n × Z ℓ q q 8

  32. Many Samples from Subset Sum µ = q m ⇒ m samples ⇒ δ = n m · log q (easy for e.g. m = n 2 ) n log µ = From m to ℓ samples: ▶ given ( A , t ) ∈ Z m × n × Z m q q ▶ R ← D ℓ × m , where D has sufficient min-entropy. q ▶ output ( RA , R t = RAs + Re ( A , s )) ∈ Z ℓ × n × Z ℓ q q ▶ Leftover hash lemma [HILL99]: If ( A , t ) is uniform ⇒ ( A , t , RA , R t ) is uniform. 8

  33. Many Samples from Subset Sum µ = q m ⇒ m samples ⇒ δ = n m · log q (easy for e.g. m = n 2 ) n log µ = From m to ℓ samples: ▶ given ( A , t ) ∈ Z m × n × Z m q q ▶ R ← D ℓ × m , where D has sufficient min-entropy. q ▶ output ( RA , R t = RAs + Re ( A , s )) ∈ Z ℓ × n × Z ℓ q q ▶ Leftover hash lemma [HILL99]: If ( A , t ) is uniform ⇒ ( A , t , RA , R t ) is uniform. ▶ ( RA , R t ) is not Subset Sum distributed ( Re ( A , s ) ̸ = e ( RA , s )) . 8

  34. Outline 1 Our Contribution 2 Subset Sum 3 CCA secure PKE 4 Tag-Based Encryption

  35. CCA secure PKE Given a One-Time Signature ( OTS ), [CHK04]: TBE + OTS → CCA-secure PKE. 10

  36. CCA secure PKE Given a One-Time Signature ( OTS ), [CHK04]: TBE + OTS → CCA-secure PKE. Tag-Based Encryption ( TBE ): TBE = ( Gen , Enc , Dec ) . 10

  37. CCA secure PKE Given a One-Time Signature ( OTS ), [CHK04]: TBE + OTS → CCA-secure PKE. Tag-Based Encryption ( TBE ): TBE = ( Gen , Enc , Dec ) . Correctness: For ( sk , pk ) ← Gen ( 1 n ) : Dec ( sk , τ, Enc ( pk , τ, M )) = M 10

  38. CCA secure PKE Given a One-Time Signature ( OTS ), [CHK04]: TBE + OTS → CCA-secure PKE. Tag-Based Encryption ( TBE ): TBE = ( Gen , Enc , Dec ) . Correctness: For ( sk , pk ) ← Gen ( 1 n ) : Dec ( sk , τ, Enc ( pk , τ, M )) = M Security: 10

  39. CCA secure PKE Adv . Given a One-Time Signature ( OTS ), ( sk , pk ) ← Gen ( 1 n ) [CHK04]: TBE + OTS → CCA-secure PKE. Tag-Based Encryption ( TBE ): M = Dec ( sk , τ, c ) TBE = ( Gen , Enc , Dec ) . · · · b ← { 0 , 1 } Correctness: c ∗ ← Enc ( pk , τ ∗ , M b ) For ( sk , pk ) ← Gen ( 1 n ) : Dec ( sk , τ, Enc ( pk , τ, M )) = M M = Dec ( sk , τ, c ) Security: For all ppt Adv . : Pr [ b ′ = b ] = 1 / 2 . · · ·

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend