chapter 5 modeling with higher order differential
play

Chapter 5: Modeling with Higher-Order Differential Equations - PowerPoint PPT Presentation

Linear Models: Initial-Value Problems Summary Chapter 5: Modeling with Higher-Order Differential Equations Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 24, 2013 1 / 15 DE Lecture 8


  1. Linear Models: Initial-Value Problems Summary Chapter 5: Modeling with Higher-Order Differential Equations Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 24, 2013 1 / 15 DE Lecture 8 王奕翔 王奕翔

  2. Linear Models: Initial-Value Problems Summary 1 Linear Models: Initial-Value Problems 2 Summary 2 / 15 DE Lecture 8 王奕翔

  3. Linear Models: Initial-Value Problems Summary Modeling with Second Order Linear Differential Equation We focus on two linear dynamical systems modeled by the following: The two systems are: Spring/Mass Systems LRC Series Circuits 3 / 15 DE Lecture 8 ay ′′ + by ′ + cy = g ( t ) , y (0) = y 0 , y ′ (0) = y 1 , where the initial conditions are at time t = 0 . 王奕翔

  4. Linear Models: Initial-Value Problems Assume that the equilibrium position is 4 / 15 = = Hence, by Newton’s Second Law, = Due to Hooke’s Law, net force Summary DE Lecture 8 Hooke’s Law + Newton’s Second Law x = 0 , and x 向下為正 = mg − k ( s + x ) . l l l + s Note that at equilibrium 淨力為零 ⇒ mg = ks . unstretched s m x equilibrium position mx ′′ = mg − k ( s + x ) = − kx m mg − ks = 0 motion ⇒ mx ′′ + kx = 0 (a) (b) (c) ⇒ x ′′ + k mx = x ′′ + ω 2 x = 0 √ where ω = k / m . 王奕翔

  5. Linear Models: Initial-Value Problems Summary 5 / 15 where DE Lecture 8 Free Undamped Motion Solution to x ′′ + ω 2 x = 0 : x ( t ) = c 1 cos ω t + c 2 sin ω t . Free : No external force ⇐ ⇒ Homogeneous Equation Undamped : Motion is periodic (period = 2 π ω ), no loss in energy. Alternative Representation of x ( t ) : x ( t ) = A sin ( ω t + φ ) √ A := c 2 1 + c 2 2 denotes the amplitude of the motion φ := tan − 1 c 1 c 2 denotes the initial phase angle 王奕翔

  6. Linear Models: Initial-Value Problems Hence, by Newton’s Second Law, 6 / 15 Summary = with a resisting force proportional to the velocity. Assume that the mass is in a surrounding medium Free Damped Motion DE Lecture 8 Net force = mg − k ( s + x ) − β x ′ . mx ′′ = mg − k ( s + x ) − β x ′ = − kx − β x ′ ⇒ x ′′ + β mx ′ + k mx = x ′′ + 2 λ x ′ + ω 2 x = 0 m √ where ω = k / m and λ = β /2 m . 王奕翔

  7. Linear Models: Initial-Value Problems Summary 7 / 15 DE Lecture 8 Solutions of Free Damped Motion √ D 2 + 2 λ D + ω 2 has two roots − λ ± λ 2 − ω 2 . Solution to x ′′ + 2 λ x ′ + ω 2 x = 0 : Overdamped λ 2 > ω 2 : x ( t ) = e − λ t ( λ 2 − ω 2 t ) √ √ λ 2 − ω 2 t + c 2 e − c 1 e Critically damped λ 2 = ω 2 : x ( t ) = e − λ t ( c 1 + c 2 t ) Underdamped λ 2 < ω 2 : x ( t ) = e − λ t ( ) √ √ ω 2 − λ 2 t + c 2 sin ω 2 − λ 2 t c 1 cos 王奕翔

  8. Linear Models: Initial-Value Problems Summary (a) Overdamped (b) Critically damped (c) Underdamped 8 / 15 DE Lecture 8 x x t t undamped x underdamped t 王奕翔

  9. Linear Models: Initial-Value Problems vertically oscillating. 9 / 15 Summary Hence, by Newton’s Second Law, = applied to the system. For example, the support is Driven Motion DE Lecture 8 Assume that the certain external force f ( t ) is Net force = mg − k ( s + x ) − β x + f ( t ) . mx ′′ = mg − k ( s + x ) − β x ′ + f ( t ) = − kx − β x ′ + f ( t ) ⇒ x ′′ + β mx ′ + k mx = x ′′ + 2 λ x ′ + ω 2 x = F ( t ) √ where ω = k / m , λ = β /2 m , and F ( t ) = f ( t )/ m . m 王奕翔

  10. Linear Models: Initial-Value Problems Summary 10 / 15 2 Find a particular solution: DE Lecture 8 Solve 1 Find the complementary solution: When F ( t ) is Periodic x ′′ + 2 λ x ′ + ω 2 x = F 0 sin γ t .  e − λ t ( λ 2 − ω 2 t ) √ √ λ 2 − ω 2 t + c 2 e − λ 2 > ω 2  ,  c 1 e  e − λ t ( c 1 + c 2 t ) , λ 2 = ω 2 x c ( t ) = √ √  e − λ t ( )  λ 2 < ω 2 ω 2 − λ 2 t + c 2 sin ω 2 − λ 2 t  , c 1 cos  A sin γ t + B cos γ t , λ ̸ = 0   λ = 0 , ω 2 ̸ = γ 2 x p ( t ) = A sin γ t + B cos γ t ,  λ = 0 , ω 2 = γ 2  At sin γ t + Bt cos γ t , 王奕翔

  11. Linear Models: Initial-Value Problems Summary 11 / 15 steady-state transient DE Lecture 8 Driven Damped Motion: Steady-State vs.Transient When λ ̸ = 0 , it is a damped system, and the general solution is x ( t ) = x c ( t ) + A sin γ t + B cos γ t , where  ( λ 2 − ω 2 t ) √ √ λ 2 − ω 2 t + c 2 e − λ 2 > ω 2 ,   c 1 e  x c ( t ) = e − λ t λ 2 = ω 2 ( c 1 + c 2 t ) , √ √  ( )  ω 2 − λ 2 t + c 2 sin ω 2 − λ 2 t λ 2 < ω 2  , c 1 cos Note that if λ > 0 , x c ( t ) → 0 as t → ∞ . ∴ x ( t ) → A sin γ t + B cos γ t as t → ∞ . Decompose x ( t ) into two parts: x ( t ) = x c ( t ) + A sin γ t + B cos γ t � �� � ���� 王奕翔

  12. Linear Models: Initial-Value Problems Summary Pure Resonance solution is 12 / 15 DE Lecture 8 When λ = 0 and ω 2 = γ 2 , it is a undamped system, and the general x ( t ) = c 1 cos ω t + c 2 sin ω t + At sin ω t + Bt cos ω t Note that x ( t ) → ∞ as t → ∞ , which is because of resonance . x t 王奕翔

  13. Linear Models: Initial-Value Problems Recall from Chapter 1 that the voltage drop across 13 / 15 have Summary DE Lecture 8 Series Circuit the three elements are L dI dt , IR , and q C respectively. L Using the fact that I = dq E ( t ) R dt and Kirchhoff’s Law, we Lq ′′ + Rq ′ + q / C = E ( t ) . C Overdamped R 2 > 4 L / C Critically damped R 2 = 4 L / C Underdamped R 2 < 4 L / C 王奕翔

  14. Linear Models: Initial-Value Problems steady-state current. 14 / 15 3 Superposition principle of nonhomogeneous linear DE: if 2 We just need to find the particular solution q p . . Summary Observation : DE Lecture 8 Steady-State Current Example L E ( t ) R For the external voltage E ( t ) = E 0 sin γ t , find the C E 0 e i γ t − E 0 e − i γ t ) { E 0 e i γ t } 1 ( 1 E 0 sin γ t = Im = 2 i q p , 1 is a particular solution of Lq ′′ + Rq ′ + q / C = E 0 e i γ t q p , 2 is a particular solution of Lq ′′ + Rq ′ + q / C = E 0 e − i γ t 1 then q p := 2 i ( q p , 1 − q p , 2 ) is a particular solution of the original DE. 1 4 q ∗ p , 1 = q p , 2 and therefore q p := 2 i ( q p , 1 − q p , 2 ) = Im { q p , 1 } . 王奕翔

  15. Linear Models: Initial-Value Problems steady-state current. 15 / 15 Hence the steady-state (complex) current Summary q s We just need to solve the following: DE Lecture 8 Steady-State Current Example L E ( t ) R For the external voltage E ( t ) = E 0 sin γ t , find the C Lq ′′ + Rq ′ + q / C = E 0 e i γ t . Note that the particular solution take the form q s e i γ t . Plug it in we get L ( i γ ) 2 + R ( i γ ) + 1/ C E 0 ( ) = E 0 = ⇒ q p , 1 ( t ) = + i γ Re i γ t . ( 1 C − L γ 2 ) E 0 I p , 1 ( t ) = ) e i γ t ( 1 R + i γ L − γ C 王奕翔

  16. Linear Models: Initial-Value Problems steady-state current. 16 / 15 R . The steady-state (real) current is just the imaginary part of the above: Summary Let’s further manipulate the steady-state (complex) current DE Lecture 8 Example Steady-State Current L E ( t ) R For the external voltage E ( t ) = E 0 sin γ t , find the C ) e i γ t = E 0 E 0 I p , 1 ( t ) = R + iXe i γ t , ( R + i γ L − 1 γ C 1 where X := γ L − γ C is called the reactance of the circuit. R 2 + X 2 ( R sin γ t − X cos γ t ) = E 0 E 0 I p ( t ) = Im { I p , 1 ( t ) } = Z sin ( γ t − φ ) , √ R 2 + X 2 is called the impedance of the circuit, φ = tan − 1 X where Z := 王奕翔

  17. Linear Models: Initial-Value Problems Summary 1 Linear Models: Initial-Value Problems 2 Summary 17 / 15 DE Lecture 8 王奕翔

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend