chapter 4 problem statement
play

Chapter 4: Problem Statement CK Cheng Dept. of Computer Science and - PowerPoint PPT Presentation

CSE203B Convex Optimization: Chapter 4: Problem Statement CK Cheng Dept. of Computer Science and Engineering University of California, San Diego 1 Convex Optimization Formulation 1. Introduction I. Eliminating equality constants II. Slack


  1. CSE203B Convex Optimization: Chapter 4: Problem Statement CK Cheng Dept. of Computer Science and Engineering University of California, San Diego 1

  2. Convex Optimization Formulation 1. Introduction I. Eliminating equality constants II. Slack variables III. Absolute values, softmax 2. Optimality Conditions I. Local vs. global optimum II. Optimality criterion for differentiable ๐‘” 0 i. Optimization without constraints ii. Opt. with inequality constraints iii. Opt. with equality constraints III. Quasi-convex optimization 3. Linear Optimization 4. Quadratic Optimization 5. Geometric Programming 6. Generalized Inequality Constraints 2

  3. 1. Introduction Formulation: One of the most critical processes to conduct a project. min ๐‘” 0 (๐‘ฆ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐‘ฆ โ‰ค 0 ๐‘— = 1, โ€ฆ , ๐‘› โ„Ž ๐‘— ๐‘ฆ = 0 ๐‘— = 1, โ€ฆ , ๐‘ž (๐ต๐‘ฆ = ๐‘ Affine set) ๐‘ฆ โˆˆ ๐‘† ๐‘œ 0 : ๐‘† ๐‘œ โ†’ ๐‘† ๐ธ 0 ๐‘” ๐‘” ๐‘— : ๐‘† ๐‘œ โ†’ ๐‘† ๐ธ ๐‘” ๐‘— ๐‘” ๐ธ โ„Ž ๐‘— โ„Ž ๐‘— : ๐‘† ๐‘œ โ†’ ๐‘† ๐‘” 0 , ๐‘” ๐‘— , โ€ฆ , ๐‘” ๐‘› ๐‘๐‘ ๐‘“ ๐‘‘๐‘๐‘œ๐‘ค๐‘“๐‘ฆ ๐ธ =โˆฉ ๐‘—=0,๐‘› ๐ธ ๐‘” โˆฉ ๐‘—=0,๐‘ž ๐ธ โ„Ž ๐‘— Domain of functions, but not the feasible set. Feasible Set: The set which satisfies the constraints (is convex for convex problems). 3

  4. 1.1 Introduction: Eliminating Equality Constraints min ๐‘” 0 (๐‘ฆ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐‘ฆ โ‰ค 0 ๐‘— = 1, โ€ฆ , ๐‘› ๐ต๐‘ฆ = ๐‘ Convert ๐‘ฆ ๐ต๐‘ฆ = ๐‘ ๐‘ข๐‘ ๐บ๐‘จ + ๐‘ฆ 0 ๐‘จ โˆˆ ๐‘† ๐‘™ a. b. We have a equivalent problem min ๐‘” 0 (๐บ๐‘จ + ๐‘ฆ 0 ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐บ๐‘จ + ๐‘ฆ 0 โ‰ค 0 Remark: Matrix ๐บ contains columns of null space basis 4

  5. 1.2 Introduction: Slack Variables min ๐‘” 0 (๐‘ฆ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐‘ฆ โ‰ค 0, ๐‘— = 1, โ€ฆ , ๐‘› ๐ต๐‘ฆ = ๐‘ Add slack variables to convert to an equivalent problem a. Convert the objective function with variable t min ๐‘ข ๐‘ก. ๐‘ข. ๐‘” 0 ๐‘ฆ โˆ’ ๐‘ข โ‰ค 0 ๐‘” ๐‘— ๐‘ฆ โ‰ค 0 , ๐‘— = 1, โ€ฆ , ๐‘› ๐ต ๐‘ˆ ๐‘ฆ = ๐‘ b. Convert the inequality with variables ๐‘ก ๐‘— min ๐‘” 0 (๐‘ฆ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐‘ฆ + ๐‘ก ๐‘— = 0 ๐ต ๐‘ˆ ๐‘ฆ = ๐‘ ๐‘ก ๐‘— โˆˆ ๐‘† + , ๐‘— = 1, โ€ฆ , ๐‘› 5

  6. 1.3 Introduction: Absolute values and Softmax a. Absolute values ๐‘” ๐‘— (๐‘ฆ) โ‰ค ๐‘ โ‡’ ๐‘” ๐‘— ๐‘ฆ โ‰ค ๐‘ ๐‘๐‘œ๐‘’ โˆ’๐‘” ๐‘— ๐‘ฆ โ‰ค ๐‘ b. Maximum values max{๐‘” 1 , ๐‘” 2 , โ€ฆ , ๐‘” ๐‘› } 1 1 + ๐‘“ ๐›ฝ๐‘” 1 + โ‹ฏ + ๐‘“ ๐›ฝ๐‘” ๐›ฝ log ( ๐‘“ ๐›ฝ๐‘” Soft๐‘›๐‘๐‘ฆ: ๐‘› ) ๐น๐‘ฆ๐‘๐‘›๐‘ž๐‘š๐‘“: max{1, 5, 10, 2, 3} โ‡’ Softmax 1 ๐›ฝ log(๐‘“ ๐›ฝ + ๐‘“ 5๐›ฝ + ๐‘“ 10๐›ฝ + ๐‘“ 2๐›ฝ + ๐‘“ 3๐›ฝ ) โ‰ˆ 10 6

  7. าง 2.1 Optimality Conditions: Local vs. Global Optima Definition: Local Optima ๐‘ฆ โˆˆ ๐‘† ๐‘œ Given a convex optimization problem and a point าง If there exists a ๐‘  > 0 ๐‘ก. ๐‘ข. ๐‘” 0 ๐‘จ โ‰ฅ ๐‘” ๐‘ฆ for all ๐‘จ โˆˆ Feasible Set, and ๐‘จ โˆ’ าง ๐‘ฆ 2 โ‰ค ๐‘  0 Then าง ๐‘ฆ is a local optimum . 7

  8. าง าง าง าง าง 2.2 Optimality Conditions Theorem: Given a convex opt. problem If าง ๐‘ฆ is a local optimum, then าง ๐‘ฆ is a global optimum Proof: By contradiction Suppose that โˆƒ๐‘ง โˆˆ ๐บ๐‘“๐‘๐‘ก๐‘—๐‘๐‘š๐‘“ ๐‘‡๐‘“๐‘ข ๐‘ก. ๐‘ข. ๐‘” ๐‘ฆ > ๐‘” 0 ๐‘ง 0 We have ๐‘” ๐‘ฆ > 1 โˆ’ ๐œ„ ๐‘” ๐‘ฆ + ๐œ„๐‘” 0 เดค ๐‘ง ๐‘๐‘ง ๐‘๐‘ก๐‘ก๐‘ฃ๐‘›๐‘ž๐‘ข๐‘—๐‘๐‘œ 0 0 > ๐‘” 0 ( 1 โˆ’ ๐œ„ ๐‘ฆ + ๐œ„เดค ๐‘ง) ๐‘” 0 ๐‘—๐‘ก ๐‘‘๐‘๐‘œ๐‘ค๐‘“๐‘ฆ And 1 โˆ’ ๐œ„ ๐‘ฆ + ๐œ„เดค ๐‘ง is feasible (Feasible set is convex) The inequality contradicts to the assumption of local optima. 8

  9. 2.2 Optimality Criterion for Differentiable ๐‘” 0 ๐‘ฆ 0 ๐‘ฆ ๐‘ˆ ๐‘ง โˆ’ ๐‘ฆ โ‰ฅ 0 , for a given ๐‘ฆ โˆˆ Feasible Set Theorem: If ๐›ผ๐‘” and for all ๐‘ง โˆˆ Feasible Set, then ๐‘ฆ is optimal . 0 ๐‘ฆ โˆˆ ๐ฟ โˆ— ) ( i. e. ๐ฟ = ๐‘ง โˆ’ ๐‘ฆ ๐‘ง โˆˆ ๐‘”๐‘“๐‘๐‘ก๐‘—๐‘๐‘š๐‘“ ๐‘ก๐‘“๐‘ข , โˆ‡๐‘” Proof: From the first order condition of convex function, we 0 ๐‘ฆ ๐‘ˆ (๐‘ง โˆ’ ๐‘ฆ) . have ๐‘” 0 ๐‘ง โ‰ฅ ๐‘” 0 ๐‘ฆ + ๐›ผ๐‘” ๐‘ˆ ๐‘ฆ Given the condition that ๐›ผ๐‘” ๐‘ง โˆ’ ๐‘ฆ โ‰ฅ 0, โˆ€๐‘ง in feasible set . 0 We have ๐‘” 0 ๐‘ง โ‰ฅ ๐‘” 0 ๐‘ฆ , โˆ€๐‘ง in feasible set, which implies that ๐‘ฆ is optimal. ๐‘ˆ ๐‘ฆ Remark: ๐›ผ๐‘” ๐‘ง โˆ’ ๐‘ฆ = 0 is a supporting hyperplane to 0 feasible set at ๐‘ฆ . 9

  10. 2.2.1 Optimality Criterion without Constraints 0 ๐‘ฆ , ๐‘ฆ โˆˆ ๐‘† ๐‘œ , where ๐‘” Theorem: For problem min ๐‘” 0 is convex, the optimal condition is โˆ‡๐‘” 0 ๐‘ฆ = 0. Proof: ( โˆ‡๐‘” 0 ๐‘ฆ = 0 โ‡’ Optimality) 0 ๐‘ฆ ๐‘ˆ ๐‘ง โˆ’ ๐‘ฆ , โˆ€๐‘ฆ, ๐‘ง โˆˆ ๐‘† ๐‘œ (first order Since ๐‘” 0 ๐‘ง โ‰ฅ ๐‘” 0 ๐‘ฆ + ๐›ผ๐‘” condition of convex function) We have ๐‘” 0 ๐‘ง โ‰ฅ ๐‘” 0 ๐‘ฆ . Therefore, x is an optimal solution. ( โˆ‡๐‘” 0 ๐‘ฆ = 0 โ‡ Optimality) By contradiction 10

  11. าง าง าง 2.2.2 Opt. with Inequality Constraints Problem: Min ๐‘” 0 ๐‘ฆ s.t. ๐ต๐‘ฆ โ‰ค ๐‘ , ๐ต โˆˆ ๐‘† ๐‘›ร—๐‘œ Suppose that ๐ต าง ๐‘ฆ = ๐‘ (one particular case). Let ๐‘ฆ = าง ๐‘ฆ + ๐‘ฃ . We can write แ‰Š min ๐‘” ๐‘ฆ + ๐‘ฃ 0 ๐ต๐‘ฃ โ‰ค 0 0 ๐‘ฆ ๐‘ˆ ๐‘ฃ โ‰ฅ 0, โˆ€{๐‘ฃ|๐ต๐‘ฃ โ‰ค 0} โ‰ก ๐ฟ Opt. condition : ๐›ผ๐‘” In other words , ๐‘ฆ โˆˆ ๐ฟ โˆ— ๐‘๐‘” ๐ฟ = ๐‘ฃ ๐ต๐‘ฃ โ‰ค 0 ๐‘๐‘œ๐‘’ ๐ฟ โˆ— = {โˆ’๐ต ๐‘ˆ ๐‘ค|๐‘ค โ‰ฅ 0} ๐›ผ๐‘” 0 ๐‘ฆ = โˆ’๐ต ๐‘ˆ ๐‘ค , โˆƒ๐‘ค โˆˆ ๐‘† + ๐‘› i.e. ๐›ผ๐‘” 0 ๐‘ฆ) + ๐ต ๐‘ˆ ๐‘ค = 0, ๐‘ค โ‰ฅ 0. ๐›ผ๐‘” 0 ( าง 11

  12. าง าง าง 2.2.3 Opt. with Equality Constraints แ‰Š min ๐‘” 0 ๐‘ฆ ๐‘ก. ๐‘ข. ๐ต๐‘ฆ = ๐‘ Let ๐‘ฆ = าง ๐‘ฆ + ๐‘ฃ and ๐ต าง ๐‘ฆ = ๐‘, we have แ‰Š min ๐‘” ๐‘ฆ + ๐‘ฃ 0 , ๐ฟ = {๐‘ฃ|๐ต๐‘ฃ = 0} ๐ต๐‘ฃ = 0 ๐‘ฆ โˆˆ ๐ฟ โˆ— , ๐ฟ โˆ— = {๐ต ๐‘ˆ ๐‘ค|๐‘ค โˆˆ ๐‘† ๐‘ž } ๐›ผ๐‘” 0 ๐‘ฆ + ๐ต ๐‘ˆ ๐‘ค = 0 ๐›ผ๐‘” 0 Let ๐ฟ 1 = ๐‘ฃ ๐ต๐‘ฃ โ‰ฅ 0 ๐ฟ 2 = ๐‘ฃ โˆ’๐ต๐‘ฃ โ‰ฅ 0 W e have โˆ— = ๐ต ๐‘ˆ ๐‘ค ๐‘ค โ‰ฅ 0 ๐ฟ 1 โˆ— = โˆ’๐ต ๐‘ˆ ๐‘ค ๐‘ค โ‰ฅ 0 = ๐ต ๐‘ˆ ๐‘ค ๐‘ค โ‰ค 0 ๐ฟ 2 โˆ— โˆช ๐ฟ 2 โˆ— = {๐ต ๐‘ˆ ๐‘ค|๐‘ค โˆˆ ๐‘† ๐‘ž } (๐ฟ 1 โˆฉ ๐ฟ 2 ) โˆ— = ๐ฟ 1 12

  13. 2.2.3 Opt. with Equality Constraints: Example 2 + ๐‘ฆ 2 2 min ๐‘ฆ ๐‘” ๐‘ฆ = ๐‘ฆ 1 ๐‘ฆ 1 ๐‘ก. ๐‘ข. 2 1 ๐‘ฆ 2 = 3 โˆ— = ( We can derive ๐‘ฆ โˆ— = ๐‘ฆ 1 6 3 โˆ— , ๐‘ฆ 2 5 , 5 ) 12 12 โˆ— ๐›ผ๐‘” ๐‘ฆ โˆ— = 2๐‘ฆ 1 + 2 , ๐›ผ๐‘” ๐‘ฆ โˆ— + ๐ต ๐‘ˆ ๐‘ค = 6 5 5 โˆ— = 1 ร— โˆ’ 5 = 0 6 6 2๐‘ฆ 2 5 5 New Problem: 2๐‘ฆ 1 2๐‘ฆ 2 + 2 1 ๐‘ค = 0 ๐›ผ๐‘” ๐‘ฆ + ๐ต ๐‘ˆ ๐‘ค = 0 โ‡’ ๐‘ฆ 1 ๐ต๐‘ฆ = ๐‘ 2 1 ๐‘ฆ 2 = 3 13

  14. 2.3 Quasiconvex Functions ๐‘”: ๐‘† ๐‘œ โ†’ ๐‘† is called quasiconvex (unimodal) sublevel set ๐‘‡ ๐‘ข = ๐‘ฆ ๐‘ฆ โˆˆ ๐‘’๐‘๐‘› ๐‘”, ๐‘” ๐‘ฆ โ‰ค ๐‘ข} if its domain and all sublevel sets ๐‘‡ ๐‘ข , โˆ€๐‘ข โˆˆ ๐‘† are convex, ๐‘”: ๐‘† ๐‘œ โ†’ ๐‘† is called quasiconcave if โˆ’๐‘” is quasiconvex. quasiconvex and quasiconcave โ†’ quasilinear ๐‘”(๐‘ฆ) Ex: log ๐‘ฆ, ๐‘ฆ โˆˆ ๐‘† ++ 14

  15. 2.3 Quasiconvex Functions Ex: Ceiling function ๐ท๐‘“๐‘—๐‘š ๐‘ฆ = inf ๐‘จ โˆˆ ๐‘Ž ๐‘จ > ๐‘ฆ : quasilinear ๐‘ฆ 1 0 1 1 2 ๐‘ฆ 1 ๐‘ฆ 2 Ex: ๐‘” ๐‘ฆ 1 , ๐‘ฆ 2 = ๐‘ฆ 1 ๐‘ฆ 2 = ๐‘ฆ 2 1 0 2 ๐‘ฆ 1 ๐‘ฆ 2 โ‰ฅ ๐‘ข} 2 , ๐‘‡ ๐‘ข = ๐‘ฆ โˆˆ ๐‘† + is quasiconcave in ๐‘† + ๐‘ ๐‘ˆ ๐‘ฆ+๐‘ ๐‘‘ ๐‘ˆ ๐‘ฆ+๐‘’ for ๐‘‘ ๐‘ˆ ๐‘ฆ + ๐‘’ > 0 Ex: ๐‘” ๐‘ฆ = ๐‘‡ ๐‘ข = ๐‘ฆ ๐‘‘ ๐‘ˆ ๐‘ฆ + ๐‘’ > 0, ๐‘ ๐‘ˆ + ๐‘ โ‰ค ๐‘ข(๐‘‘ ๐‘ˆ ๐‘ฆ + ๐‘’)} open halfspace closed halfspace โ†’ ๐‘‡ ๐‘ข is convex ( ๐‘ข is given here) quasiconvex โ†’ ๐‘”(๐‘ฆ) is quasiconcave โ†’ quasilinear เต  15

  16. 2.3 Quasiconvex Optimization min ๐‘” ๐‘ (๐‘ฆ) (๐‘” ๐‘ (๐‘ฆ) is quasiconvex, ๐‘” ๐‘— โ€ฒ๐‘ก are convex. ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐‘ฆ โ‰ค 0, ๐‘— = 1, โ€ฆ , ๐‘› ๐ต๐‘ฆ = ๐‘ Remark: A locally opt. solution (๐‘ฆ, ๐‘” 0 ๐‘ฆ ) may not be globally opt. Algorithm: Bisection method for quasiconvex optimization. Given ๐‘š โ‰ค ๐‘ž โˆ— โ‰ค ๐‘ฃ, ๐œ— > 0 Find a Repeat 1. ๐‘ข = (๐‘š + ๐‘ฃ)/2 convex function 2. F ind a feasible solution ๐‘ฆ : ๐‘ก. ๐‘ข. ฮฆ ๐‘ข ๐‘ฆ โ‰ค 0 ๐‘” 0 ๐‘ฆ โ‰ค ๐‘ข โ‡” ฮฆ t ๐‘ฆ โ‰ค 0 ๐‘” ๐‘— ๐‘ฆ โ‰ค 0 ๐ต๐‘ฆ = ๐‘ 3. If solution is feasible, ๐‘ฃ = ๐‘ข, ๐‘“๐‘š๐‘ก๐‘“ ๐‘š = ๐‘ข Until ๐‘ฃ โˆ’ ๐‘š โ‰ค ๐œ— ๐‘ž ๐‘ฆ Ex: ๐‘” ๐‘ฆ = ๐‘Ÿ ๐‘ฆ โ‰ค ๐‘ข โ†’ ๐‘ž ๐‘ฆ โˆ’ ๐‘ข๐‘Ÿ ๐‘ฆ โ‰ค 0 ( p is convex & q is concave) 16

  17. 3. Linear Programming: Format General Form : min ๐‘‘ ๐‘ˆ ๐‘ฆ ๐‘ก. ๐‘ข. ๐ป๐‘ฆ โ‰ค โ„Ž, ๐ป โˆˆ ๐‘† ๐‘›โˆ—๐‘œ , ๐ต โˆˆ ๐‘† ๐‘žโˆ—๐‘œ ๐ต๐‘ฆ = ๐‘ Standard Form : min ๐‘‘ ๐‘ˆ ๐‘ฆ ๐‘ก. ๐‘ข. ๐ต๐‘ฆ = ๐‘ ๐‘ฆ โ‰ฅ 0 Remark: Figure out three possible situations 1. No feasible solutions 2. Unbounded solutions 3. Bounded solutions 17

  18. 3. Linear Programming: Cases min ๐‘‘ ๐‘ˆ ๐‘ฆ ๐‘ก. ๐‘ข. ๐ต๐‘ฆ = ๐‘ (1) No feasible solutions: ๐‘ โˆ‰ ๐‘†(๐ต) ( b is not in the range of A ) 1 1 2 ๐‘ฆ 1 ๐‘ฆ 2 = 1 2 2 e.g. 2 3 3 (2) Unbounded solutions: ๐‘ โˆˆ ๐‘†(๐ต) but ๐‘‘ โˆ‰ ๐‘†(๐ต ๐‘ˆ ) ๐‘ฆ 1 e.g. min 1 1 ๐‘ฆ 2 ๐‘ฆ 1 (The solution โ†’ โˆ’โˆž) ๐‘ฆ 2 = 2 1 2 (3) Bounded solutions: b โˆˆ ๐‘† ๐ต , ๐‘‘ โˆˆ ๐‘† ๐ต ๐‘ˆ ๐‘ฆ 1 e.g. min 1 1 ๐‘ฆ 2 ๐‘ฆ 1 1 1 ๐‘ฆ 2 = 2 1 2 2 Thus ๐‘ฆ โˆ— = 2 2 0 , ๐‘” ๐‘ฆ โˆ— = 1 0 = 2 1 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend