causal set is a partially ordered set defined as a b if
play

Causal set is a partially ordered set defined as: a b if and only if - PDF document

Causal set is a partially ordered set defined as: a b if and only if one can travel from a to b without going faster than the speed of light Topology is defined by Alexandrov sets ( p, q ) = { r | p r q } Discreteness is defined


  1. Causal set is a partially ordered set defined as: a ≺ b if and only if one can travel from a to b without going faster than the speed of light Topology is defined by Alexandrov sets α ( p, q ) = { r | p ≺ r ≺ q } Discreteness is defined through local finiteness: ♯α ( p, q ) < ∞ Metric is defined through τ ( p, q ) = ξ max { n |∃ r 1 , · · · , r n − 1 ( p ≺ r 1 ≺ · · · ≺ r n − 1 ≺ q ) } Note: It is max rather than min because of the minus sign in Minkowskian metric. For ( dt ) 2 − | d� x | 2 (sign convention is (+ − −− )) � example, if geodesic is along t -axis, | dt | ≥ 1

  2. Key idea a) Assume smooth manifold and the presence of coordinates b) Re-express coordinate-dependent expressions in a way that coordinates aren’t explic- itly mentioned c) Copy the result for the non-manifold situation (ex: tree-like causal structure, etc) Key difference between causal sets and other discrete theories: In manifold situation, the causal set assumption is Poisson scattering = ⇒ lack of structure, emphasis on statistical properties Key difference between my work and other types of causal set theory: I am trying to re-interpret causal structure, the definition of fields, etc, while still sticking to statistical approach 2

  3. Conventional version of causal set Lagrangian (Sorkin at el) Use − φ ∆ φ instead of + ∂ µ φ∂ µ φ 2D case: � (∆ φ )( p ) = ( φ ( p ) + φ ( r ) − 2 φ ( s )) (1) { ( r,s ) | α ( r,p )= { s }} d dimension � ∆ φ = ( c 0 ( d ) φ ( p ) + c 1 ( d ) φ ( r 1 ) + · · · + c n ( d ) ( d ) φ ( r n ( d ) )) (2) r n ( d ) ≺ r n ( d ) − 1 ≺···≺ r 1 ≺ p NOTE Cancelation only occurs sufficiently far away from the boundary What I don’t like about it: Existence of the boundary = ⇒ Preferred frame = ⇒ invalidation of stated claim of causal set theory 3

  4. Steven Johnston’s propagator Summing over all possible paths 1) Propagators are defined direction, WITHOUT the use of Lagrangians 2) Propagators don’t face the problem of non-locality because of the TWO endpoints Problem: Coupling different propagators to each other during φ 4 -coupling Easy solution: Impose a condition by hand which edges are allowed to be φ 4 -coupled and which aren’t 4

  5. DILLEMA: Locality = ⇒ Finately many neighbors = ⇒ Nearest neighbor = ⇒ Preferred frame MY ANSWER: The price for nearest edge neighbor is violation of Newtons first law INSTEAD OF preferred frame a) the nearest edge-neighbor relates to the fact that geodesic wiggles b) wiggling of geodesic is interpretted as gravity THEREFORE c) nearest edge-neighbor phenomenon is ”explained away” through gravity 5

  6. Conventional thinking � γ µ ( τ ) dτ a ( p, q ) = A µ ( γ ( τ ))˙ (3) γ ( p,q ) where γ is a geodesic connecting p and q φ ( x ) is given My thinking a) Replace A µ ( x ) and φ ( x ) with A µ ( x, p ) and φ ( x, p ) b) Assume A µ ( x, p 1 ) ≈ A µ ( x, p 2 ) and φ ( x, p 1 ) ≈ φ ( x, p 2 ) if the relative velocity of refer- ence frames corresponding to p 1 and p 2 is not too close to c c) Assume that in the reference frames, with resect to which p/ | p | isn’t too close to c , φ ( x, p ) and A µ ( x, p ) are both locally linear d) Define � x µ ( τ ) dτdτ a ( p, q ) = A µ ( γ ( τ ) , ˙ γ ( τ )) ˙ (4) γ ( p,q ) 1 � x µ ( τ ) dτ φ ( p, q ) = φ ( γ ( τ ) , ˙ γ ( τ )) ˙ (5) τ ( p, q ) γ ( p,q ) NOTE: Since path integral is dominated by NON-DIFFERENTIABLE paths, the ssumptions b and c are dropped once we are under the path integral; those assumptions ONLY apply to “well behaved” functions we are thinking of in order to “motivate” our definition of the action. NOTE: a ( p, q ) = − a ( q, p ), BUT φ ( p, q ) = + φ ( q, p ) 6

  7. Setup � L = η scal ( K 1 ( φ ; p, q, r ) − C scal ( d ) K 2 ( φ ; p, q )) (6) α ( p,q ) � � d d r (top − bottom) 2 = d d r ( φ ( r, q ) − φ ( p, r )) 2 K 1 = (7) α ( p,q ) α ( p,q ) � ∂φ � ∂φ �� 2 � 2 � 2 � � � � � � r + ˆ e 0 � � r ˆ e 0 � � � d d r d d r d d r (8) K 1 = φ − φ = = � � 2 2 ∂x 0 ∂x 0 � � α ( p,q ) α ( p,q ) α ( p,q ) 0 0 � 2 � φ ( p, r ) + φ ( r, q ) � � d d r (left − right) 2 = d d r K 2 = − φ ( p, q ) (9) 2 α ( p,q ) α ( p,q ) � ∂φ � 2 � 2 � r 0 � r 0 � � � r � � 2 + ∂φ � � d d r d d r K 2 = φ − φ (0) = = � � 2 ∂r 0 ∂r 0 2 � � α ( p,q ) α ( p,q ) 0 0 �� ∂φ � ∂φ � 2 � � 2 � � � � = 1 d d r ( r 1 ) 2 + 2 ∂φ ∂φ � d d r ( r 0 ) 2 + � � d d rr 0 r 1 (10) � � ∂r 0 ∂r 1 ∂r 0 ∂r 1 4 � � α ( p,q ) α ( p,q ) α ( p,q ) 0 0 � d d r r 0 r 1 = 0 Odd Function = ⇒ (11) α ( p,q ) �� ∂φ � ∂φ � 2 � � 2 � � � � K 2 = 1 d d r ( r 0 ) 2 + � � d d r ( r 1 ) 2 (12) � � 4 ∂r 0 ∂r 1 � � α ( p,q ) α ( p,q ) 0 0 7

  8. Finding C scal ( d ) � ∂φ � ∂φ � ∂φ � 2 � 2 � 2 � � � � � − C scal ( d ) � � t 2 � � + � ( r 1 ) 2 � � = � � � ∂x 0 ∂x 0 ∂x 1 4 � � � 0 0 0 �� ∂φ � ∂φ � 2 � 2 � (1 − C scal ( d ) � − C scal ( d ) � � t 2 � � ( r 1 ) 2 � � � = (13) � � ∂x 0 ∂x 1 4 4 � � 0 0 1 − C scal ( d ) � t 2 � = C scal ( d ) ⇒ 1 = C scal ( d ) 4 � ( r 1 ) 2 � = ( � t 2 � + � ( r 1 ) 2 � = ⇒ C scal ( d ) = � t 2 � + � ( r 1 ) 2 � 4 4 4 � 1 � 1 1 0 ξ k ξ d − 1 dξ 0 ξ d + k − 1 dξ d d + k ⇒ � (1 − t ) k � = ξ = 1 − t = = = = (14) � 1 � 1 1 d + k 0 ξ d − 1 dξ 0 ξ d − 1 dξ d d 1 � t � = 1 − � 1 − t � = 1 − d + 1 = (15) d + 1 2 d d � t 2 � = � (1 − (1 − t )) 2 � = 1 − 2 � 1 − t � + � (1 − t ) 2 � = 1 − d + 1 + d + 2 = = d 2 + 3 d + 2 − 2 d 2 − 4 d + d 2 + d = ( d + 1)( d + 2) − 2 d ( d + 2) + d ( d + 1) = ( d + 1)( d + 2) ( d + 1)( d + 2) = (1 − 2 + 1) d 2 + (3 − 4 + 1) d + 2 2 = (16) ( d + 1)( d + 2) ( d + 1)( d + 2) � 1 � 1 0 ( r d − r d +1 ) dr 1 1 0 r 2 r d − 2 (1 − r ) dr d +1 − � r 2 � = d +2 = = = � 1 � 1 0 ( r d − 2 − r d − 1 ) dr d − 1 − 1 1 0 r d − 2 (1 − r ) dr d d +2 − d − 1 1 ( d − 1) d ( d +1)( d +2) ( d +1)( d +2) = = = (17) 1 d − d +1 ( d + 1)( d + 2) ( d − 1) d ( d − 1) d d − 1 1 d � � r 2 � = � ( x k ) 2 � = ( d − 1) � ( x 1 ) 2 � = ⇒ � ( x 1 ) 2 � = d − 1 � r 2 � = (18) ( d + 1)( d + 2) k =1 4 4 4 4 C scal ( d ) = � t 2 � + � ( x 1 ) 2 � = = = = 4( d + 1) (19) 2 d +2 1 d ( d +1)( d +2) + ( d +1)( d +2) ( d +1)( d +2) d +1 8

  9. Avoiding C ( d ) K 1 ( f ; p 1 , q 1 ) − C ( d ) K 2 ( f ; p 1 , q 1 ) = K 1 ( f ; p 2 , q 2 ) − C ( d ) K 2 ( f ; p 2 , q 2 ) (20) K 1 ( f ; p 1 , q 1 ) − K 1 ( f ; p 2 , q 2 ) = C ( d )( K 2 ( f ; p 1 , q 1 ) − K 2 ( f ; p 2 , q 2 )) (21) C ( d ) = K 1 ( f ; p 1 , q 1 ) − K 1 ( f ; p 2 , q 2 ) (22) K 2 ( f ; p 1 , q 1 ) − K 2 ( f ; p 2 , q 2 ) L = η ( K 1 ( φ ; p 0 , q 0 ) − C ( d ) K 2 ( φ ; p 0 , q 0 )) (23) � K 1 ( φ ; p 0 , q 0 ) − K 1 ( f ; p 1 , q 1 ) − K 1 ( f ; p 2 , q 2 ) � L = η K 2 ( f ; p 1 , q 1 ) − K 2 ( f ; p 2 , q 2 ) K 2 ( φ ; p 0 , q 0 ) (24) � � � K 1 ( φ ; p 0 , q 0 ) − K 1 ( f ; p 1 , q 1 ) − K 1 ( f ; p 2 , q 2 ) �� L = η W ( p 1 , q 1 , p 2 , q 2 ) K 2 ( f ; p 1 , q 1 ) − K 2 ( f ; p 2 , q 2 ) K 2 ( φ ; p 0 , q 0 ) (25) W ( p 1 , p 2 , q 1 , q 2 ) w ( p 1 , p 2 , q 1 , q 2 ) = η (26) K 1 ( f ; p 1 , q 1 ) − K 1 ( f ; p 2 , q 2 ) � � L = w ( p 1 , p 2 , q 1 , q 2 )( K 1 ( φ ; p 0 , q 0 )( K 2 ( f ; p 1 , q 1 ) − K 2 ( f ; p 2 , q 2 )) − � −K 2 ( φ ; p 0 , q 0 ))( K 1 ( f ; p 1 , q 1 ) − K 1 ( f ; p 2 , q 2 )) (27) To define f introduce p 3 and write f p 3 ( s ) = τ ( p 3 , s ) (28) Need both p 3 and q 3 for the electromagnetic field 9

  10. Charged scalar field based on short edges Gauge field on the edge: 1 � s 1 ≺ s 2 = ⇒ φ ( s 1 , s 2 ) = φ ( s ) | ds | (29) τ ( s 1 , s 2 ) γ ( s 1 ,s 2 ) Scalar field at the left: φ ( p, q ) Scalar field at the right: ( φ ( p, r ) + φ ( r, q )) / 2 (Note: φ ( r, q ) = + φ ( q, r )) Gauge field from left to right: ( a ( p, r ) + a ( q, r )) / 2 (Note: a ( r, q ) = − a ( q, r )) Left-right contribution to the Lagrangian: 2 � � 1 + i � φ ( p, q ) − 1 � � d d r � � 2( a ( p, r ) + a ( q, r )) 2( φ ( p, r ) + φ ( r, q )) (30) � � � � α ( p,q ) Scalar field at the top: ( φ ( p, q ) + φ ( r, q )) / 2 Scalar field at the bottom: φ ( p, r ) Gauge field from bottom to top: ( a ( p, r ) + a ( p, q )) / 2 Bottom-top contribution to the Lagrangian: 2 � � � 1 − i � φ ( r, q ) − 1 � � 2( a ( p, r ) + a ( p, q )) 2( φ ( p, q ) + φ ( r, q )) (31) � � � � Total charged scalar field contribution to the Lagrangian: 2 � � � � � 1 − i � φ ( r, q ) − 1 � � d d r L scal = ν scal 2( a ( p, r ) + a ( p, q )) 2( φ ( p, q ) + φ ( r, q )) � � � � α ( p,q ) 2 � � � � � 1 + i � φ ( p, q ) − 1 d d r � � − C ( d ) 2( a ( p, r ) + a ( q, r )) 2( φ ( p, r ) + φ ( r, q )) (32) � � � � α ( p,q ) 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend