category theory in geometry
play

Category Theory in Geometry Abigail Timmel Mentor: Thomas - PowerPoint PPT Presentation

Category Theory in Geometry Abigail Timmel Mentor: Thomas Brazelton Categories Category: a collection of objects and morphisms between objects Every object c has an identity morphism I c For morphisms f : c d and g : d


  1. Category Theory in Geometry Abigail Timmel Mentor: Thomas Brazelton

  2. Categories Category: a collection of objects and morphisms between objects Every object c has an identity morphism I c ➒ ➒ For morphisms f : c πŸ “ d and g : d πŸ “ e, there is a composite morphism gf : c πŸ “ e Examples: ➒ Sets & functions ➒ Groups & group homomorphisms ➒ T opological spaces & continuous functions

  3. Categories An isomorphism is a morphism f f : c πŸ “ d with g : d πŸ “ c so that fg = I d c d g and gf = I c Examples ➒ Set: bijections ➒ Group: group isomorphisms ➒ T op: homeomorphisms

  4. Functors Functor: a map F : C D between categories taking πŸ “ C objects to objects and morphisms to morphisms ➒ Preserves identity morphisms ➒ Preserves function composition Examples: ➒ Forgetful: Group πŸ “ Set sends groups to sets of elements ➒ C(c, - ): C πŸ “ Set sends x to set of morphisms c πŸ “ x and morphisms x πŸ “ y to C(c,x) πŸ “ C(c,y) by postcomposition c ➒ Constant: C πŸ “ c sends every object in C to c, every morphism to the identity on c

  5. Diagrams Diagram F : J πŸ “ C: i c d ➒ An indexing category J of a certain shape f h ➒ A functor F assigning objects and morphism in C to that shape c’ d g ’

  6. Natural Transformations Ξ± c Natural transformation F β‡’ G of Fc Gc functors F, G : C πŸ “ D: ➒ A collection of morphisms called F Gf components Ξ± c : Fc πŸ “ Gc f ➒ For all f : c πŸ “ c’, the diagram Fc Gc commutes Ξ± c ’ ’ If the components are isomorphisms, ’ we have a natural isomorphism F β‰… G

  7. Cones Cone over a diagram F : J πŸ “ C: c ➒ A natural transformation between the constant functor c : J πŸ “ c and the diagram F : J πŸ “ C Ξ» 1 Ξ» 4 Ξ» 5 Ξ» 2 Ξ» 3 The components Ξ» j are called legs ➒ F(1) F(2) F(3) F(4) F(5)

  8. Universal Properties A functor F : C πŸ “ Set is representable if there is an object c in C so that C(c, - ) β‰… F ➒ Recall C(c, - ) takes an object c’ to the set of morphisms c πŸ “ c’ The functor F encodes a universal property of c

  9. Limits A limit is a universal cone: c ➒ There is a natural isomorphism C( - , lim F) β‰… Cone( - , F) Lim F ➒ Morphisms c Lim F are in πŸ “ bijection with cones with summit c over F F(1) F(2) F(3) F(4) F(5)

  10. Limits in Geometry Z Product X x Y X Y Spaces Diagram shape Product of spaces

  11. Limits in Geometry Pullback f -1 ( x ) Y f X * Spaces i Diagram shape Fiber of x=i(*)

  12. Conclusion Category Theory is everywhere ➒ Mathematical objects and their functions belong to categories ➒ Maps between difgerent types of objects/functions are functors ➒ Universal properties such as limits describe constructions like products and fjbers

  13. Reference β€œCategory Theory in Context” by Emily Riehl

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend