categorical liveness checking
play

Categorical Liveness Checking by Corecursive Algebras Natsuki - PowerPoint PPT Presentation

Categorical Liveness Checking by Corecursive Algebras Natsuki Urabe, Masaki Hara & Ichiro Hasuo June 20, 2017 Natsuki Urabe (U. Tokyo) 1 / 29 Motivation ranking function nondeterministic system Natsuki Urabe (U.


  1. Categorical Liveness Checking � by � Corecursive Algebras Natsuki Urabe, Masaki Hara & Ichiro Hasuo � June 20, 2017 Natsuki Urabe (U. Tokyo) � 1 / 29

  2. Motivation ranking function � nondeterministic system Natsuki Urabe (U. Tokyo) � 2 / 29

  3. Motivation “categorical ranking function” � generalization categorically � generalized system ranking function � nondeterministic system Natsuki Urabe (U. Tokyo) � 2 / 29

  4. Motivation “categorical ranking function” � generalization concretization � categorically � generalized system “probabilistic � ranking function � ranking � function”? nondeterministic system probabilistic � system Natsuki Urabe (U. Tokyo) � 2 / 29

  5. Outline • Preliminary � - Ranking Function � - Coalgebra and Coalgebra-Algebra Homomorphism � • Contribution � - Coalgebraic Ranking Function � - Probabilistic Ranking Function � • Conclusion and Future Work Natsuki Urabe (U. Tokyo) � 3 / 29

  6. Outline • Preliminary � - Ranking Function � - Coalgebra and Coalgebra-Algebra Homomorphism � • Contribution � - Coalgebraic Ranking Function � - Probabilistic Ranking Function � • Conclusion and Future Work Natsuki Urabe (U. Tokyo) � 3 / 29

  7. Ranking Function (see e.g. [Floyd, ’67]) • A method for checking reachability Def: A function is a ranking function if: b : X → N ∞ x ! x 0 b ( x 0 )+1 ≤ b ( x ) min for each nonaccepting state x N ∪ { ∞ } ( ) N ∞ = Natsuki Urabe (U. Tokyo) � 4 / 29

  8. Ranking Function (see e.g. [Floyd, ’67]) • A method for checking reachability Def: A function is a ranking function if: b : X → N ∞ x ! x 0 b ( x 0 )+1 ≤ b ( x ) min for each nonaccepting state x N ∪ { ∞ } ( ) N ∞ = c b a ○ ○ ○ ○ ● x x arbitrary ≥ min { a, b, c } + 1 accepting nonaccepting Natsuki Urabe (U. Tokyo) � 4 / 29

  9. / / / O o O O / Ranking Function (see e.g. [Floyd, ’67]) • A method for checking reachability Def: A function is a ranking function if: b : X → N ∞ x ! x 0 b ( x 0 )+1 ≤ b ( x ) min for each nonaccepting state x N ∪ { ∞ } ( ) N ∞ = • Example: x 1 x 3 x 5 u x 0 x 2 x 4 Natsuki Urabe (U. Tokyo) � 5 / 29

  10. / / / O o O O / Ranking Function (see e.g. [Floyd, ’67]) • A method for checking reachability Def: A function is a ranking function if: b : X → N ∞ x ! x 0 b ( x 0 )+1 ≤ b ( x ) min for each nonaccepting state x N ∪ { ∞ } ( ) N ∞ = • Example: x 1 x 3 x 5 0 u x 0 x 2 x 4 Natsuki Urabe (U. Tokyo) � 5 / 29

  11. O / / O o / O / Ranking Function (see e.g. [Floyd, ’67]) • A method for checking reachability Def: A function is a ranking function if: b : X → N ∞ x ! x 0 b ( x 0 )+1 ≤ b ( x ) min for each nonaccepting state x N ∪ { ∞ } ( ) N ∞ = • Example: x 1 x 3 x 5 1 0 u x 0 x 2 x 4 Natsuki Urabe (U. Tokyo) � 5 / 29

  12. O / / O o / O / Ranking Function (see e.g. [Floyd, ’67]) • A method for checking reachability Def: A function is a ranking function if: b : X → N ∞ x ! x 0 b ( x 0 )+1 ≤ b ( x ) min for each nonaccepting state x N ∪ { ∞ } ( ) N ∞ = • Example: x 1 x 3 x 5 2 1 0 u x 0 x 2 x 4 Natsuki Urabe (U. Tokyo) � 5 / 29

  13. o / / O O / O / Ranking Function (see e.g. [Floyd, ’67]) • A method for checking reachability Def: A function is a ranking function if: b : X → N ∞ x ! x 0 b ( x 0 )+1 ≤ b ( x ) min for each nonaccepting state x N ∪ { ∞ } ( ) N ∞ = • Example: ∞ x 1 x 3 x 5 2 1 0 u x 0 x 2 x 4 Natsuki Urabe (U. Tokyo) � 5 / 29

  14. O / / o O / O / Ranking Function (see e.g. [Floyd, ’67]) • A method for checking reachability Def: A function is a ranking function if: b : X → N ∞ x ! x 0 b ( x 0 )+1 ≤ b ( x ) min for each nonaccepting state x N ∪ { ∞ } ( ) N ∞ = • Example: ∞ ∞ ∞ x 1 x 3 x 5 2 1 0 u x 0 x 2 x 4 Natsuki Urabe (U. Tokyo) � 5 / 29

  15. o O / / O / O / Soundness of Ranking Functions ∞ ∞ ∞ x 1 x 3 x 5 ! distance to an b ( x ) ≥ accepting state from x 2 1 0 u x 0 x 2 x 4 Natsuki Urabe (U. Tokyo) � 6 / 29

  16. / / / O o O / O Soundness of Ranking Functions ∞ ∞ ∞ x 1 x 3 x 5 ! distance to an b ( x ) ≥ accepting state from x 2 1 0 u x 0 x 2 x 4 Thm: (see e.g. [Floyd, PSAM ’67] ) an accepting state b is a ranking function ⇒ b ( x ) < ∞ and is reachable from x Natsuki Urabe (U. Tokyo) � 6 / 29

  17. / O / / O / O o Soundness of Ranking Functions ∞ ∞ ∞ x 1 x 3 x 5 ! distance to an b ( x ) ≥ accepting state from x 2 1 0 u x 0 x 2 x 4 Thm: (see e.g. [Floyd, PSAM ’67] ) an accepting state b is a ranking function ⇒ b ( x ) < ∞ and is reachable from x under-approximates the reaching set Natsuki Urabe (U. Tokyo) � 6 / 29

  18. Outline • Preliminary � - Ranking Function � - Coalgebra and Coalgebra-Algebra Homomorphism � • Contribution � - Coalgebraic Ranking Function � - Probabilistic Ranking Function � • Conclusion and Future Work Natsuki Urabe (U. Tokyo) � 7 / 29

  19. Towards Categorical Generalization • Our first goal: � categorical generalization of ranking function • We have to categorically characterize: - a transition system - a reachability to accepting states Natsuki Urabe (U. Tokyo) � 8 / 29

  20. Coalgebra • An ( F -) coalgebra is a function of the following form: X → F X : a functor F X 7! F X ( f : X → Y ) 7! ( F f : F X → F Y ) • Coalgebras model transition systems Natsuki Urabe (U. Tokyo) � 9 / 29

  21. Coalgebra • An ( F -) coalgebra is a function of the following form: X → F X : a functor F X 7! F X ( f : X → Y ) 7! ( F f : F X → F Y ) • Coalgebras model transition systems • Dual notion: algebra F X → X • Algebras model modalities Natsuki Urabe (U. Tokyo) � 9 / 29

  22. Example I: � Nondeterministic Transition System with Accepting States c : X → P X × { 0 , 1 } where P X = { A ⊆ X } F = P ( ) × { 0 , 1 } Natsuki Urabe (U. Tokyo) � 10 / 29

  23. / / O o O / / O Example I: � Nondeterministic Transition System with Accepting States c : X → P X × { 0 , 1 } where P X = { A ⊆ X } F = P ( ) × { 0 , 1 } x 1 x 3 x 5 u x 0 x 2 x 4 an accepting state Natsuki Urabe (U. Tokyo) � 10 / 29

  24. / / O o O / O / Example I: � Nondeterministic Transition System with Accepting States c : X → P X × { 0 , 1 } where P X = { A ⊆ X } F = P ( ) × { 0 , 1 } X = { x 0 , x 1 , x 2 , x 3 , x 4 , x 5 } x 1 x 3 x 5 x 0 7! ( { x 1 , x 2 } , 0)   u  x 1 7! ( { x 3 } , 0)    x 0 x 2 x 4 c : . . an accepting state . x 4 7! ( { x 5 } , 1)     .  . . Natsuki Urabe (U. Tokyo) � 10 / 29

  25. Example II: � Probabilistic Transition System with Accepting States c : X → D X × { 0 , 1 } where F = D ( ) × { 0 , 1 } D X = { d : X → [0 , 1] | P x d ( x ) = 1 } Natsuki Urabe (U. Tokyo) � 11 / 29

  26. / O O o O Example II: � Probabilistic Transition System with Accepting States c : X → D X × { 0 , 1 } where F = D ( ) × { 0 , 1 } D X = { d : X → [0 , 1] | P x d ( x ) = 1 } x 1 x 3 x 5 1 1 0 . 7 0 . 4 1 u 0 . 3 / 0 . 6 / x 0 x 2 x 4 Natsuki Urabe (U. Tokyo) � 11 / 29

  27. O O o O / Example II: � Probabilistic Transition System with Accepting States c : X → D X × { 0 , 1 } where F = D ( ) × { 0 , 1 } D X = { d : X → [0 , 1] | P x d ( x ) = 1 } x 1 x 3 x 5 X = { x 0 , x 1 , x 2 , x 3 , x 4 , x 5 } 1 1  x 0 7! ([ x 1 7! 0 . 7 , x 2 7! 0 . 3] , 0) 0 . 7 0 . 4 1   u  x 1 7! ([ x 3 7! 1] , 0) 0 . 3 / 0 . 6 /  c : x 0 x 2 x 4 x 2 7! ([ x 3 7! 0 . 4 , x 4 7! 0 . 6] , 0)    .  . . Natsuki Urabe (U. Tokyo) � 11 / 29

  28. O ✏ Coalgebra-Algebra Homomorphism Def: F f / F Ω F X A coalgebra-algebra homomorphism from to σ : F Ω → Ω c : X → F X c σ = f : X → Ω is s.t. σ � F f � c = f f / Ω X • Especially, the least coalgebra-algebra homomorphism captures reachability J µ σ K c : X → Ω Natsuki Urabe (U. Tokyo) � 12 / 29

  29. ✏ O Coalgebra-Algebra Homomorphism Def: F f / F Ω F X A coalgebra-algebra homomorphism from to σ : F Ω → Ω c : X → F X c σ = f : X → Ω is s.t. σ � F f � c = f f / Ω X • Especially, the least coalgebra-algebra homomorphism captures reachability J µ σ K c : X → Ω Example: ∃ • For nondeterministic systems, s.t. σ : F { 0 , 1 } → { 0 , 1 } J µ σ K c ( x ) = 1 ⇔ an accepting state is reachable from x ∃ σ : F [0 , 1] → [0 , 1] • For probabilistic systems, s.t. J µ σ K c ( x ) = Prob( reach an accepting state from x ) Natsuki Urabe (U. Tokyo) � 12 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend