bv solutions of the jin xin model
play

BV solutions of the Jin-Xin model Stefano Bianchini, IAC(CNR) Roma - PowerPoint PPT Presentation

BV solutions of the Jin-Xin model Stefano Bianchini, IAC(CNR) Roma http://www.iac.cnr.it/ September 17, 2004 1 We consider the (special) Jin-Xin relaxation model [Jin-Xin 95] u t + v x = 0 u, v R n , R , (1) 1 v t + 2


  1. The kernels Γ 12 , Γ 22 show that only v x influences u :    e − ( x 2 − λt ) 2 / (4(1 − λ 2 )(1+ t )) Γ 12 ( t, x ) = ∂   + exp.dec, h.o. terms  , � ∂x (1 − λ 2 )(1 + t ) 2   e − ( x 2 − λt ) 2 / (4(1 − λ 2 )(1+ t )) Γ 22 ( t, x ) = ∂  ∂   + ”,”  + exp.dec . � ∂x ∂x (1 − λ 2 )(1 + t ) 2 This result is important when studying decay to an equilibrium state (¯ u, ¯ v ) = (0 , F (0) = 0), because by Duhamel formula 8

  2. The kernels Γ 12 , Γ 22 show that only v x influences u :    e − ( x 2 − λt ) 2 / (4(1 − λ 2 )(1+ t )) Γ 12 ( t, x ) = ∂   + exp.dec, h.o. terms  , � ∂x (1 − λ 2 )(1 + t ) 2   e − ( x 2 − λt ) 2 / (4(1 − λ 2 )(1+ t )) Γ 22 ( t, x ) = ∂  ∂   + ”,”  + exp.dec . � ∂x ∂x (1 − λ 2 )(1 + t ) 2 This result is important when studying decay to an equilibrium state (¯ u, ¯ v ) = (0 , F (0) = 0), because by Duhamel formula � t � � � � � � u ( t ) u (0) 0 = Γ( t ) ∗ + 0 Γ( t − s ) ∗ ds v ( t ) v (0) F ( u ( s )) − A (0) u ( s ) � �� � ≈ G x ( t − s ) ∗ u ( s ) 2 8

  3. • The dependence w.r.t. u 0 + �u 0 ,t can be easily seen with the example u t = � ( u xx − u tt ) . with initial data u (0) = 0, u t (0) = � − 1 . 9

  4. • The dependence w.r.t. u 0 + �u 0 ,t can be easily seen with the example u t = � ( u xx − u tt ) . with initial data u (0) = 0, u t (0) = � − 1 . The solution is 1 − e − t/� , which converges to u ( t ) ≡ 1, t > 0. 9

  5. • The dependence w.r.t. u 0 + �u 0 ,t can be easily seen with the example u t = � ( u xx − u tt ) . with initial data u (0) = 0, u t (0) = � − 1 . The solution is 1 − e − t/� , which converges to u ( t ) ≡ 1, t > 0. The hyperbolic limit � → 0 has the ”initial data” t → 0+ u ( t ) = 1 = lim lim � → 0 u 0 + �u t, 0 . 9

  6. BV estimates in the conservative case 10

  7. BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . 10

  8. BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . Differentiating w.r.t. x the BGK scheme (2) 10

  9. BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . Differentiating w.r.t. x the BGK scheme (2)  f − + I − A ( u ) − I + A ( u ) f − t − f − f + =  f ± = F ± x 2 2 (8) x . I + A ( u ) f − − I − A ( u ) f + + f + f + =  x t 2 2 10

  10. BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . Differentiating w.r.t. x the BGK scheme (2)  f − + I − A ( u ) − I + A ( u ) f − t − f − f + =  f ± = F ± x 2 2 (8) x . I + A ( u ) f − − I − A ( u ) f + + f + f + =  x t 2 2 Differentiating (2) w.r.t. t we obtain 10

  11. BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . Differentiating w.r.t. x the BGK scheme (2)  f − + I − A ( u ) − I + A ( u ) f − t − f − f + =  f ± = F ± x 2 2 (8) x . I + A ( u ) f − − I − A ( u ) f + + f + f + =  x t 2 2 Differentiating (2) w.r.t. t we obtain  − I + A ( u ) g − + I − A ( u ) g − t − g − g + =  g ± = F ± x 2 2 t . (9) I + A ( u ) g − − I − A ( u ) g + t + g + g + =  x 2 2 10

  12. BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . Differentiating w.r.t. x the BGK scheme (2)  − I + A ( u ) f − + I − A ( u ) f − t − f − f + =  f ± = F ± x 2 2 x . (8) f + + f + I + A ( u ) f − − I − A ( u ) f + =  x t 2 2 Differentiating (2) w.r.t. t we obtain  − I + A ( u ) g − + I − A ( u ) g − g + t − g − =  g ± = F ± x 2 2 t . (9) g + t + g + I + A ( u ) g − − I − A ( u ) g + =  x 2 2 Our aim: � f ± (0) � L 1 , � g ± (0) � L 1 ≤ δ 0 f ± ( t ) , g ± ( t ) ∈ L 1 ( R ) . = ⇒ 10

  13. Center manifold of travelling profiles 11

  14. Center manifold of travelling profiles We study the ODE − σu x + A ( u ) u x = (1 − σ 2 ) u xx , 11

  15. Center manifold of travelling profiles We study the ODE − σu x + A ( u ) u x = (1 − σ 2 ) u xx , which can be written as the first order system  u x = p   (1 − σ 2 ) p x = ( A ( u ) − σI ) p (10)  = 0  σ x 11

  16. Center manifold of travelling profiles We study the ODE − σu x + A ( u ) u x = (1 − σ 2 ) u xx , which can be written as the first order system  u x = p   (1 − σ 2 ) p x = ( A ( u ) − σI ) p (10)  = 0  σ x Close to any equilibrium (0 , 0 , λ i (0)), one can find a center man- ifold of travelling profiles: 11

  17. Center manifold of travelling profiles We study the ODE − σu x + A ( u ) u x = (1 − σ 2 ) u xx , which can be written as the first order system  u x = p   (1 − σ 2 ) p x = ( A ( u ) − σI ) p (10)  = 0  σ x Close to any equilibrium (0 , 0 , λ i (0)), one can find a center man- ifold of travelling profiles: ˜ p = v i ˜ r i ( u, v i , σ ) , λ i = � ˜ r i , A ( u )˜ r i � , | ˜ r i ( u ) | = 1 . (11) 11

  18. We can parameterize by the the kinetic component f i : 12

  19. We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 12

  20. We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = 12

  21. We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is (12) (13) 12

  22. We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is f − = (12) (13) 12

  23. We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is f − = (1 − σ ) v i ˜ r i ( u, v i , σ ) (12) (13) 12

  24. We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is � � f − f − = (1 − σ ) v i ˜ r i ( u, v i , σ )= f − i i ˜ r i u, 1 − σ, σ (12) (13) 12

  25. We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is � � f − f − = (1 − σ ) v i ˜ r i ( u, v i , σ )= f − = f − r − i ( u, f − i i ˜ r i u, 1 − σ, σ i ˜ i , σ ) (12) (13) 12

  26. We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is � � f − f − = (1 − σ ) v i ˜ r i ( u, v i , σ )= f − = f − r − i ( u, f − i i ˜ r i u, 1 − σ, σ i ˜ i , σ ) (12) � � u, (1 + σ ) v i f + = (1 + σ )˜ r i , σ 1 + σ (13) 12

  27. We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is � � f − f − = (1 − σ ) v i ˜ r i ( u, v i , σ )= f − = f − r − i ( u, f − i i ˜ r i u, 1 − σ, σ i ˜ i , σ ) (12) � � u, (1 + σ ) v i f + = (1 + σ )˜ = f + r + i ( u, f + r i , σ i ˜ i , σ ) 1 + σ (13) 12

  28. Identification of a travelling profile: u (¯ x ), σ and v i (¯ x ), 13

  29. Identification of a travelling profile: u (¯ x ), σ and v i (¯ x ), u σ u(x− t) x u x x − + f ,f − x x 13

  30. x ), σ and f − Identification of a travelling profile: u (¯ i (¯ x ), u σ u(x− t) x u x x − + f ,f σ (1− )u x − x x 14

  31. x ), σ and f + Identification of a travelling profile: u (¯ i (¯ x ), u σ u(x− t) x u x x − + σ f ,f (1+ )u x σ (1− )u x − x x 15

  32. Decomposition in travelling profiles 16

  33. Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: 16

  34. Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: (14) 16

  35. Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: � i f − r − i ( u, f − i , σ − f − � = i ˜ i ) (14) i g − r − i ( u, f − i , σ − g − � = i ˜ i ) 16

  36. Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: � � − g − � i f − r − i ( u, f − i , σ − f − � = i ˜ i ) σ − i i = θ i (14) , i g − r − i ( u, f − i , σ − g − � f − = i ˜ i ) i 16

  37. Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: � � − g − � i f − r − i ( u, f − i , σ − f − � = i ˜ i ) σ − i i = θ i (14) , i g − r − i ( u, f − i , σ − g − � f − = i ˜ i ) i θ i λ i where θ i is the cutoff function . − − −g /f i i 16

  38. Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: � � − g − � i f − r − i ( u, f − i , σ − f − � = i ˜ i ) σ − i i = θ i (14) , i g − r − i ( u, f − i , σ − g − � f − = i ˜ i ) i θ i λ i where θ i is the cutoff function . − − −g /f i i Similarly for ( f + , g + ): 16

  39. Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: � � − g − � i f − r − i ( u, f − i , σ − f − � = i ˜ i ) σ − i i = θ i (14) , i g − r − i ( u, f − i , σ − g − � f − = i ˜ i ) i θ i λ i where θ i is the cutoff function . − − −g /f i i Similarly for ( f + , g + ):    − g + � i f + r + i ( u, f + i , σ + f + � = i ˜ i ) σ + i  , = θ i (15) i g + r + i ( u, f + i , σ + i g + � f + = i ˜ i ) i 16

  40. To find travelling profiles, we look separately to the t , x deriva- tives of F − , F + , and try to fit n travelling profiles into F − and n into F + . 17

  41. To find travelling profiles, we look separately to the t , x deriva- tives of F − , F + , and try to fit n travelling profiles into F − and n into F + . F − t x 17

  42. To find travelling profiles, we look separately to the t , x deriva- tives of F − , F + , and try to fit n travelling profiles into F − and n into F + . F − t x 18

  43. To find travelling profiles, we look separately to the t , x deriva- tives of F − , F + , and try to fit n travelling profiles into F − and n into F + . F − t φ σ (x− t) x 19

  44. To find travelling profiles, we look separately to the t , x deriva- tives of F − , F + , and try to fit n travelling profiles into F − and n into F + . F − t φ σ (x− t) x We obtain thus 2 n travelling waves: n for F − and n for F + . 19

  45. Equation for the components f ± i , g ± are of the form: i 20

  46. Equation for the components f ± i , g ± are of the form: i  λ + λ − 1+˜ 1 − ˜  f − j,t − f − f − f + + ς − j j  = j + f,j ( t, x ) −  j,x j 2 2 (16) λ + λ − 1+˜ 1 − ˜  f + j,t + f + f + + ς + f − j j  = j − f,j ( t, x )  j,x j 2 2 20

  47. Equation for the components f ± i , g ± are of the form: i  λ + λ − 1+˜ 1 − ˜  f − j,t − f − f − f + + ς − j j  = j + f,j ( t, x ) −  j,x j 2 2 (16) λ + λ − 1+˜ 1 − ˜  f + j,t + f + f + + ς + f − j j  = j − f,j ( t, x )  j,x j 2 2  λ + λ − − 1+˜ i + 1 − ˜  g − i,t − g − g − g + + ς −  i i = g,i ( t, x )  i,x 2 2 i (17) λ + λ − 1+˜ i − 1 − ˜ g + i,t + g + g + + ς + g −  i i  = g,i ( t, x )  i,x i 2 2 20

  48. Equation for the components f ± i , g ± are of the form: i  λ + λ − 1+˜ 1 − ˜  f − j,t − f − f − f + + ς − j j  = j + f,j ( t, x ) −  j,x j 2 2 (16) λ + λ − 1+˜ 1 − ˜  f + j,t + f + f + + ς + f − j j  = j − f,j ( t, x )  j,x j 2 2  λ + λ − − 1+˜ i + 1 − ˜  g − i,t − g − g − g + + ς −  i i = g,i ( t, x )  i,x 2 2 i (17) λ + λ − 1+˜ i − 1 − ˜ g + i,t + g + g + + ς + g −  i i  = g,i ( t, x )  i,x i 2 2 with ς ± f , ς ± g sources of total variation for F ± x , F ± and g 20

  49. Equation for the components f ± i , g ± are of the form: i  λ + λ − 1+˜ 1 − ˜  f − j,t − f − f − f + + ς − j j  = j + f,j ( t, x ) −  j,x j 2 2 (16) λ + λ − 1+˜ 1 − ˜  f + j,t + f + f + + ς + f − j j  = j − f,j ( t, x )  j,x j 2 2  λ + λ − − 1+˜ i + 1 − ˜  g − i,t − g − g − g + + ς −  i i = g,i ( t, x )  i,x 2 2 i (17) λ + λ − 1+˜ i − 1 − ˜ g + i,t + g + g + + ς + g −  i i  = g,i ( t, x )  i,x i 2 2 with ς ± f , ς ± g sources of total variation for F ± x , F ± and g   � � f + f − λ + , σ + λ − , σ − i i  . ˜ i = ˜ ˜ = ˜ λ i u, , λ i  u, 1 − σ − i i 1 + σ − i i i 20

  50. After some computations, one obtains the source terms of the form 21

  51. After some computations, one obtains the source terms of the form � � j | )( | f + k | + | g + j f + j g + | ς ± f,i | , | ς ± ( | f − j | + | g − | g − − f − g,i | ≤ C k | ) + C j | j j j � = k   f + � �   j | 2 + | g − j � | f − j + f + j + g + j | 2 + C χ ≇ 1 f −   j j � ( � f − L 1 + � f + L 1 ) | f − j − f + j | χ { f − j · f + j � 2 j � 2 + C < 0 } j j � L 1 + � f + j − g + j · g + ( � f − j � 2 j � 2 L 1 ) | g − j | χ { g − + C < 0 } . j j (18) 21

  52. After some computations, one obtains the source terms of the form � � j | )( | f + k | + | g + j f + j g + | ς ± f,i | , | ς ± ( | f − j | + | g − | g − − f − g,i | ≤ C k | ) + C j | j j j � = k   f + � �   j | 2 + | g − j � | f − j + f + j + g + j | 2 + C χ ≇ 1 f −   j j � ( � f − L 1 + � f + L 1 ) | f − j − f + j | χ { f − j · f + j � 2 j � 2 + C < 0 } j j � L 1 + � f + j − g + j · g + ( � f − j � 2 j � 2 L 1 ) | g − j | χ { g − + C < 0 } . j j (18) Prove that the source terms are quadratic w.r.t. � f ± � L 1 , � g ± � L 1 . 21

  53. Different types of source terms: 22

  54. Different types of source terms: • interaction of different families: � ( | f − j | + | g − j | )( | f + k | + | g + k | ); j � = k 22

  55. Different types of source terms: • interaction of different families: � ( | f − j | + | g − j | )( | f + k | + | g + k | ); j � = k • interaction of the same family: � j f + j g + | g − − f − C j | ; j j 22

  56. Different types of source terms: • interaction of different families: � ( | f − j | + | g − j | )( | f + k | + | g + k | ); j � = k • interaction of the same family: � j f + j g + | g − − f − C j | ; j j • energy type terms: j | 2 + | g − � ( | f − j + f + j + g + j | 2 ) χ { f + j /f − j ≇ 1 } ; j 22

  57. Different types of source terms: • interaction of different families: � ( | f − j | + | g − j | )( | f + k | + | g + k | ); j � = k • interaction of the same family: � j f + j g + | g − − f − C j | ; j j • energy type terms: j | 2 + | g − � ( | f − j + f + j + g + j | 2 ) χ { f + j /f − j ≇ 1 } ; j • L 1 decay terms: � � | f − j − f + j | χ { f − j · f + | g − j − g + j | χ { g − j · g + < 0 } + < 0 } . j j j j 22

  58. Interaction of the same family 23

  59. Interaction of the same family Consider the 2 × 2 system  1 −F ( u ) F − t − F − − F − =  u = F − + F + , |F ′ ( u ) | ≤ 1 − c. x 2 1+ F ( u ) F + − F + − F + =  x t 2 (19) 23

  60. Interaction of the same family Consider the 2 × 2 system  1 −F ( u ) F − t − F − − F − =  u = F − + F + , |F ′ ( u ) | ≤ 1 − c. x 2 1+ F ( u ) F + − F + − F + =  x t 2 (19) x = f ± , F ± Let F ± = g ± , so that (same for g ± ) t � 2 f − + 1 − λ f − − 1+ λ t − f − 2 f + = x λ ( u ) = F ′ ( u ) . (20) f + + f + 2 f − − 1 − λ 1+ λ 2 f + = x t 23

  61. Interaction of the same family Consider the 2 × 2 system  1 −F ( u ) F − t − F − − F − =  u = F − + F + , |F ′ ( u ) | ≤ 1 − c. x 2 1+ F ( u ) F + − F + − F + =  x t 2 (19) x = f ± , F ± Let F ± = g ± , so that (same for g ± ) t � 2 f − + 1 − λ f − − 1+ λ t − f − 2 f + = x λ ( u ) = F ′ ( u ) . (20) f + + f + 2 f − − 1 − λ 1+ λ 2 f + = x t Construct a functional which bounds � + ∞ � R | f − ( t, x ) g + ( t, x ) − g − ( t, x ) f + ( t, x ) | dxdt. 0 23

  62. We can rewrite the integrand as , 24

  63. We can rewrite the integrand as f − g + − g − f + = , 24

  64. We can rewrite the integrand as � � f − + g + − g − f − g + − g − f + = f − f + , f + 24

  65. We can rewrite the integrand as   � � + F +  − F − f − + g + − g − f − g + − g − f + = f − f + = F − x F + t t  , x F − f + F + x x 24

  66. We can rewrite the integrand as   � � + F +  − F − f − + g + − g − f − g + − g − f + = f − f + = F − x F + t t  , x F − f + F + x x = strengths of waves × difference in speed . 24

  67. We can rewrite the integrand as   � � + F +  − F − f − + g + − g − f − g + − g − f + = f − f + = F − x F + t t  , x F − f + F + x x = strengths of waves × difference in speed . This is not a Glimm functional, it is the interaction Remark. term. 24

  68. We can rewrite the integrand as   � � + F +  − F − f − + g + − g − f − g + − g − f + = f − f + = F − x F + t t  , x F − f + F + x x = strengths of waves × difference in speed . This is not a Glimm functional, it is the interaction Remark. term. Since it holds g − + g + = f − − f + , the condition g − /f − = g + /f + implies that the solution is a travelling profile, replacing σ x = 0. 24

  69. We can rewrite the integrand as   � � + F +  − F − f − + g + − g − f − g + − g − f + = f − f + = F − x F + t t  , x F − f + F + x x = strengths of waves × difference in speed . This is not a Glimm functional, it is the interaction Remark. term. Since it holds g − + g + = f − − f + , the condition g − /f − = g + /f + implies that the solution is a travelling profile, replacing σ x = 0. For simplicity we assume in the following λ = 0. 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend