bounds for the green energy on so 3
play

Bounds for the Green Energy on SO (3) Damir Ferizovi c joint work - PowerPoint PPT Presentation

Bounds for the Green Energy on SO (3) Damir Ferizovi c joint work with Carlos Beltr an (Universidad de Cantabria) Institute of Analysis and Number Theory Graz University of Technology December 21, 2018 Green Functions Definition A


  1. Bounds for the Green Energy on SO (3) Damir Ferizovi´ c joint work with Carlos Beltr´ an (Universidad de Cantabria) Institute of Analysis and Number Theory Graz University of Technology December 21, 2018

  2. Green Functions Definition A Green function G ( x , y ) for a linear differential operator L is given as the distributional solution to L x G ( x , y ) = δ 0 ( x − y ); or put differently, if we want to solve Lu ( x ) = f ( x ) we set � u ( x ) = f ( y ) G ( x , y ) d y . *It follows that � � Lu ( x ) = f ( y ) L x G ( x , y ) d y = f ( y ) δ 0 ( x − y ) d y = f ( x ) .

  3. f-Energies of N-Point Sets Definition Given a non-empty set X , N ∈ N and a function f : X × X → R ∪ {±∞} ; the (discrete) f -energy of X is given by N � E ( f , N ) = inf f ( x j , x k ) . { x 1 ,..., x N }⊂ X j � = k

  4. f-Energies of N-Point Sets Definition Given a non-empty set X , N ∈ N and a function f : X × X → R ∪ {±∞} ; the (discrete) f -energy of X is given by N � E ( f , N ) = inf f ( x j , x k ) . { x 1 ,..., x N }⊂ X j � = k Example (Riesz potential) Regard the unit sphere S 2 ⊂ R 3 and for s > 0, let 1 f ( x , y ) = � x − y � s . For some s < 0 the problem also makes sense (Fejes-Toth potential). The case s = 0 sometimes refers to the logarithmic potential.

  5. Why Care? Theorem (Beltr´ an, Corral, Del Cray) Let M be a compact Riemannian manifold of dimension n > 1 and let G be the (normalized) Green function for its Laplace-Beltrami operator. The unique probability measure minimizing the continuous Green energy �� I G [ µ ] = G ( x , y ) d µ ( x ) d µ ( y ) , M is the uniform measure on M. Moreover, for each N > 1 , let w ∗ N = { x 1 , . . . , x N } be a set of minimizers for the Green energy, then 1 ∗ � δ x ⇀ λ. N x ∈ w ∗ N *“Discrete and Continuous Green Energy on Compact Manifolds” by C. Beltrn, N. Corral, and J. G. Criado Del Rey, (2017).

  6. Lemma The Green function for the Laplace-Beltrami operator on SO (3) is � ω ( α − 1 β ) � π − ω ( α − 1 β ) � � G ( α, β ) = cot − 1 . 2

  7. Enter Determinantal Point Processes We will have for any measurable function f : M × M → [0 , ∞ ],   �  = f ( x i , x j ) E i � = j �� � K H ( x , x ) K H ( y , y ) − |K H ( x , y ) | 2 � f ( x , y ) d µ ( x ) d µ ( y ) , M where H ⊆ L 2 ( M ) is any N –dimensional subspace in the set of square–integrable functions and K H is the projection kernel onto H .

  8. Let’s Start Simple A simple point process on a locally compact polish space Λ with reference measure µ is a positive Radon measure � χ = δ x j , j =1 with x j � = x s for j � = s . One usually identifies χ with a discrete subset of Λ.

  9. Let’s Start Simple A simple point process on a locally compact polish space Λ with reference measure µ is a positive Radon measure � χ = δ x j , j =1 with x j � = x s for j � = s . One usually identifies χ with a discrete subset of Λ. The joint intensities of χ w.r.t. µ , if they exist, are functions ρ k : Λ k → [0 , ∞ ) for k > 0, such that for pairwise disjoint { D s } k s =1 ⊂ Λ � k � � � χ ( D s ) = ρ k ( y 1 , . . . , y k ) d µ ( y 1 ) . . . d µ ( y k ) , E D 1 × ... × D k s =1 and ρ k ( y 1 , . . . , y k ) = 0 in case y j = y s for some j � = s .

  10. Putting Determinant into Determinantal Point Processes A simple point process is determinantal with kernel K , iff for every k ∈ N and all y j ’s � � ρ k ( y 1 , . . . , y k ) = det K ( y j , y s ) 1 ≤ j , s ≤ k . If the kernel is a projection kernel, then one speaks of a determinantal projection process . Hence if N � φ j ( x )¯ K ( x , y ) = φ j ( y ) j =1 for some orthonormal system of φ j ’s, then N � � | φ j ( y ) | 2 d µ ( y ) = N . � � � χ (Λ) = K ( y , y ) d µ ( y ) = E Λ Λ j =1

  11. Putting Determinant into Determinantal Point Processes A simple point process is determinantal with kernel K , iff for every k ∈ N and all y j ’s � � ρ k ( y 1 , . . . , y k ) = det K ( y j , y s ) 1 ≤ j , s ≤ k . If the kernel is a projection kernel, then one speaks of a determinantal projection process . Hence if N � φ j ( x )¯ K ( x , y ) = φ j ( y ) j =1 for some orthonormal system of φ j ’s, then N � � | φ j ( y ) | 2 d µ ( y ) = N . � � � χ (Λ) = K ( y , y ) d µ ( y ) = E Λ Λ j =1 It follows from the Macchi–Soshnikov theorem that a simple point process with N points, associated to the projection on a finite subspace exists in Λ.

  12. Class Functions and Integrals on SO (3) Definition (Rotation Angle Distance) For α, β ∈ SO (3), we set � Trace ( α − 1 β ) − 1 � ω ( α − 1 β ) = arccos . 2

  13. Class Functions and Integrals on SO (3) Definition (Rotation Angle Distance) For α, β ∈ SO (3), we set � Trace ( α − 1 β ) − 1 � ω ( α − 1 β ) = arccos . 2 Lemma If we are given a function f ∈ L 1 ( SO (3)) such that we can find f ∈ L 1 ([0 , π ]) with f ( x ) = ˜ ˜ f ( ω ( x )) , then � π � f ( x ) d µ ( x ) = 2 f ( t ) sin 2 � t � ˜ d t . π 2 SO (3) 0 *“Surface Spline Approximation on SO(3)” by T. Hangelbroek, D. Schmid; Appl. Comput. Harmon. Anal. Volume 31, Issue 2, 169-184 (2011).

  14. Eigen- Values and Vectors for the Laplacian on SO (3) Lemma The eigenvalues of ∆ in SO (3) are λ ℓ = ℓ ( ℓ + 1) for ℓ ≥ 0 . Moreover, if H ℓ is the eigenspace associated to λ ℓ , then the dimension of H ℓ is √ (2 ℓ + 1) 2 and an orthonormal basis of H ℓ is given by 2 ℓ + 1 D ℓ m , n where − ℓ ≤ m , n ≤ ℓ and D ℓ m , n are Wigner’s D–functions. It is known that l l � ω ( α − 1 β ) � �� � � D l m , n ( α ) D l m , n ( β ) = U 2 l cos , 2 m = − l n = − l where U 2 l ( x ) is the Chebyshev polynomial of second kind.

  15. Calculating the Projection Kernel for SO (3) Thus a projection kernel on the space H L = ⊕ L ℓ =1 H ℓ is given by L l l � � � D l K ( α, β ) = (2 l + 1) m , n ( α ) D l m , n ( β ) l =0 m = − l n = − l L � ω ( α − 1 β ) � �� � = (2 l + 1) U 2 l cos 2 l =0 L = d � � T 2 l +1 ( x ) � dx � cos( ... ) l =0 = d 1 � 2 U 2 L +1 ( x ) � dx � cos( ... ) � ω ( α − 1 β ) � �� = C (2) cos . 2 L 2 Here, C (2) 2 L , L ≥ 0, is the sequence of Gegenbauer (ultraspherical) polynomials.

  16. Series Representation of Green’s Functions Theorem Given a compact Riemannian manifold ( M , g ) , then a system of orthonormal eigenfunctions { φ k } ∞ k =1 of the Laplacian on M with corresponding eigenvalues { λ k } ∞ k =1 forms a basis for the Hilbert space L 2 ( SO (3)) ; “the” Green function is given by φ k ( x ) φ k ( y ) � G ( x , y ) = . λ k k ≥ 1

  17. Series Representation of Green’s Functions Theorem Given a compact Riemannian manifold ( M , g ) , then a system of orthonormal eigenfunctions { φ k } ∞ k =1 of the Laplacian on M with corresponding eigenvalues { λ k } ∞ k =1 forms a basis for the Hilbert space L 2 ( SO (3)) ; “the” Green function is given by φ k ( x ) φ k ( y ) � G ( x , y ) = . λ k k ≥ 1 Lemma The Green function for the Laplace-Beltrami operator on SO (3) can be written in terms of the metric ω : � ω ( α − 1 β ) � π − ω ( α − 1 β ) � � G ( α, β ) = cot − 1 . 2

  18. An Upper Bound for the Green Energy   � f ( x i , x j ) E  i � = j �� � K H ( x , x ) K H ( y , y ) − |K H ( x , y ) | 2 � = f ( x , y ) d µ ( x ) d µ ( y ) M �� ��� 2 � � 2 − � ω ( α − 1 β ) �� � � C (2) C (2) = SO (3) 2 G ( α, β ) 2 L (1) cos d µ ( α ) d µ ( β ) 2 L 2 � � ω ( α − 1 ) ��� 2 � � 2 − �� � � C (2) C (2) = G ( α, 1) 2 L (1) cos d µ ( α ) 2 L 2 SO (3) � π = − 2 ��� 2 � t � 2 � t � �� � C (2) ( π − t ) cot( t 2 ) − 1 cos sin d t 2 L 2 π 2 0 ...some technicalities occur... � 4 � 3 3 N 4 3 + O ( N ) . = − 4 4

  19. Handling Technicalities Lemma The Gegenbauer polynomials C (2) n − 2 ( x ) satisfy � 1 � 2 ( x 2 − 1) � d x = O ( n 2 log( n )) . C (2) n − 2 ( x ) 0 Lemma The Gegenbauer polynomials C (2) n − 2 ( x ) satisfy � 1 d x = n 4 � 2 � 16 + O ( n 2 log( n )) . C (2) n − 2 ( x ) 0 Actually we have exact formulae.

  20. A Lower Bound for the Green Energy We define for α, β ∈ SO (3) and t > 0: ∞ e − l ( l +1) · t 2 l + 1 � ω ( α − 1 β ) � �� � G t ( α, β ) = l ( l + 1) U 2 l cos . 2 l =1

  21. A Lower Bound for the Green Energy We define for α, β ∈ SO (3) and t > 0: ∞ e − l ( l +1) · t 2 l + 1 � ω ( α − 1 β ) � �� � G t ( α, β ) = l ( l + 1) U 2 l cos . 2 l =1 Lemma (N. Elkies) For all t > 0 and α � = β we have G ( α, β ) ≥ G t ( α, β ) − t .

  22. A Lower Bound for the Green Energy We define for α, β ∈ SO (3) and t > 0: ∞ e − l ( l +1) · t 2 l + 1 � ω ( α − 1 β ) � �� � G t ( α, β ) = l ( l + 1) U 2 l cos . 2 l =1 Lemma (N. Elkies) For all t > 0 and α � = β we have G ( α, β ) ≥ G t ( α, β ) − t . Then for any collection of distinct points { α 1 , . . . , α N } ⊂ SO (3) N N � � G ( α s , α k ) + N ( N − 1)2 t ≥ G 2 t ( α s , α k ) . s � = k s � = k

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend