black holes from gr to hs
play

Black holes: From GR to HS V.E. Didenko Lebedev Institute, Moscow - PowerPoint PPT Presentation

Black holes: From GR to HS V.E. Didenko Lebedev Institute, Moscow Vienna, April 19, 2012 Plan Introduction Unfolded dynamics. GR black holes in d = 4 , 5 Algebraic facts. Unfolding formulation. Generalization to higher-spins


  1. Black holes: From GR to HS V.E. Didenko Lebedev Institute, Moscow Vienna, April 19, 2012

  2. Plan • Introduction Unfolded dynamics. • GR black holes in d = 4 , 5 Algebraic facts. Unfolding formulation. • Generalization to higher-spins Strategy. Exact solution in d = 4 . Symmetries. • Conclusion 2

  3. Unfolding of pure gravity Einstein equations R ab = 0 ⇔ R ab,cd = C ab,cd Riemann=Weyl Cartan equations dω ab + ω ac ∧ ω cb = C ac , bd e c ∧ e d , De a ≡ de a + ω ab ∧ e b = 0 . Unfolding.. DC ab,cd = C ab,cd | f e f : × = + + Bianchi identities: e b ∧ e d DC ab,cd = 0 ⇒ + = 0 DC ab , cd = ( 2C abf , cd + C abc , df + C abd , cf ) e f 3

  4. DC abc,de = C abc,de | f e f ⇒ C abc,de | f ∼ Bianchi identities Gravity unfolded module C ...,... : , , , , . . . Unfolded equations DC a 1 ...a k +2 ,b 1 b 2 = (( k +2) C a 1 ...a k +2 c,b 1 b 2 + C a 1 ...a k +2 b 1 ,b 2 c + C a 1 ...a k +2 b 2 ,b 1 c ) e c Second Bianchi identity [ D, D ] ∼ C ab,cd ⇒ nonlinear corrections DC a 1 a 2 a 3 ,b 1 b 2 = (3 C a 1 a 2 a 3 c,b 1 b 2 + C a 1 a 2 a 3 b 1 ,b 2 c + C a 1 a 2 a 3 b 2 ,b 1 c + ( Weyl ) 2 ) e c schematically DC = F a ( C ) e a solved up to O ( C 2 ) in d = 4 , M.A. Vasiliev, ’89 4

  5. Black holes in GR. • At least two isometries (any d ) • d = 4 Weyl tensor is of Petrov type D C ± ab,cd ∼ (Φ ± Φ ± ) ab,cd , Φ ab = − Φ ba . • d = 3 BTZ black hole is completely determined by an AdS 3 single isometry ξ BTZ = AdS 3 / exp tξ Type of BH is classified by inequivalent ξ with respect to AdS 3 adjoint action ξ → MξM − 1 5

  6. • Hidden symmetries (Killing-Yano tensor Φ ab ) D Φ ab = v a e b − v b e a , Φ ab = − Φ ba General decomposition: D Φ ab = Φ ab | c e c Φ ab | c → × = + + Absence of and is a manifestation of the hidden symmetry Φ ab entails (on-shell): v a – Killing vector, K ( ab ) = Φ ac Φ cb – Killing tensor, K ab v b –Killing vector. 6

  7. Φ ab in AdS (Minkowski) space-time AdS : dω ab + ω ac ∧ ω cb = Λ e a ∧ e b , d e a + ω ab ∧ e b = 0 embedding - zero curvature representation √ dW AB + W AC ∧ W CB = 0 W AB = ( ω ab , Λ e a ) ⇒ Global symmetries δW AB = D 0 ξ AB ≡ dξ AB + W AC ξ CB + W BC ξ AC = 0 , ξ AB → ( Φ ab , v a ) Dv a = − ΛΦ ab e b D Φ ab = v a e b − v b e a ξ AB – AdS global symmetry parameter 7

  8. AdS Black holes from AdS global symmetry parameter • d = 3 BTZ black hole from a single AdS 3 isometry factorization (M. Henneaux+BTZ, ’93) • d=4 AdS − Kerr from an AdS isometry µ -deformation (V.D, A.S. Matveev, M.A. Vasiliev) d=5 (V.D) Dv a = − ΛΦ ab e b + F ( µ, Φ ab , e a ) D Φ ab = v a e b − v b e a ∂ Integrating flow ∂µ links AdS to BH g BH mn = g AdS mn + f mn ( ξ AB ) BH mass m and angular momenta a i are encoded in Casimir invari- ants Tr ( ξ n AB ). ♯ ( m, a i ) =rank O(d-1,2) 8

  9. d=4 Kerr-NUT Black hole 9

  10. Spinor form for AdS 4 equations: α = 1 α Φ γα + 1 γ ¯ 2 e γ ˙ 2 e α ˙ DV α ˙ Φ ˙ α ˙ γ D Φ αα = λ 2 e α ˙ γ V α ˙ α = λ 2 e γ ˙ D ¯ γ , Φ ˙ α V γ ˙ α . α ˙ 1. AdS 4 covariant form   � �  λ − 1 Φ αβ Ω αβ − λ e α ˙ V α ˙ β β  , K AB = K BA = Ω AB = Ω BA = = λ − 1 ¯ ¯ − λ e β ˙ Ω ˙ V β ˙ Φ ˙ α α ˙ α α ˙ β β 0 ∼ R 0 AB = d Ω AB + 1 2Ω AC ∧ Ω CB = 0 . D 2 D 0 K AB = 0 , K AB – AdS 4 global symmetry parameter 2. Two first integrals related to two AdS 4 invariants (Casimir operators) C 2 = 1 C 4 = 1 4 K AB K AB = I 1 , 4 Tr K 4 = I 2 1 + λ 2 I 2 10

  11. Deformation of AdS 4 → black hole unfolded system (Keep the same form of the unfolded equations) α = 1 α Φ γα + 1 γ ¯ 2 ρ e γ ˙ ρ e α ˙ D V α ˙ 2¯ Φ ˙ γ , α ˙ D Φ αα = e α ˙ γ V α ˙ γ , α = e γ ˙ D ¯ Φ ˙ α V γ ˙ α . α ˙ Unlike the AdS 4 case with ρ = − λ 2 we assume ρ to be arbitrary Bianchi identities: D 2 ∼ R , D R = 0 fix ρ uniquely in the form G ) = M G 3 − λ 2 − q ¯ GG 3 , 1 ρ ( G, ¯ √ det Φ αβ G = 11

  12. Integrating flow and solution space ∂ The flow ∂χ , where χ = ( M , q ) [ d, ∂ ∂χ ] = 0 allows one to express BH fields in terms of AdS 4 global symmetry pa- rameter K AB . This identifies the solution space • Generic K AB , M -complex – Carter-Plebanski class of metrics. Parameters: Re M , Im M , C 2 , C 4 , q , Λ • Kerr-Newman, C 2 > 0 , M > 0 Parameters: M, a ( C 4 ) , q B = − δ AB – Schwarzschild ( V 2 < 0), Taub-NUT ( V 2 > 0) • K 2 A 12

  13. d = 5 black holes metric (Hawking-Hunter) dt − a sin 2 θ dψ � 2 + ∆ θ sin 2 θ dφ − b cos 2 θ adt − r 2 + a 2 dφ � 2 + ∆ θ cos 2 θ bdt − r 2 + b 2 ds 2 = − ∆ � � � dψ � 2 + ρ 2 ρ 2 ρ 2 Ξ a Ξ b Ξ a Ξ b abdt − b ( r 2 + a 2 ) sin 2 θ dφ − a ( r 2 + b 2 ) cos 2 θ + ρ 2 ∆ dr 2 + ρ 2 dθ 2 + (1 − Λ r 2 ) � dψ � 2 r 2 ρ 2 ∆ θ Ξ a Ξ b where ∆ = 1 r 2 ( r 2 + a 2 )( r 2 + b 2 )(1 − Λ r 2 ) − 2 M , ∆ θ = 1 + Λ a 2 cos 2 θ + Λ b 2 sin 2 θ ρ 2 = r 2 + a 2 cos 2 θ + b 2 sin 2 θ , Ξ a = 1 + Λ a 2 , Ξ b = 1 + Λ b 2 Horizon: ∆( r + ) = 0 13

  14. Black hole unfolded system AdS 5 unfolded equations Dv αβ = − Λ D Φ αβ = 1 D 2 ∼ R ads 8(Φ αγ e γβ − Φ βγ e γα ) , 2( v αγ e γβ + v βγ e γα ) consistency µ -deformation → Dv αβ = − Λ 8(Φ αγ e γβ − Φ βγ e γα ) + µ H ( Φ − 1 α γ e γβ − Φ − 1 γ e γα ) , β D Φ αβ = 1 � 2( v αγ e γβ + v βγ e γα ) , H = det Φ αβ D 2 ∼ R ads + C BH C αβγδ = − 32 µ H 3 ((Φ − 1 ) αβ (Φ − 1 ) γδ + (Φ − 1 ) αγ (Φ − 1 ) βδ + (Φ − 1 ) αδ (Φ − 1 ) βγ ) 14

  15. Black holes Φ αβ = 1 v αβ = v 0 2( v αγ x γβ + v βγ x γα ) + Φ 0 Φ 0 αβ = const , αβ , αβ = const Lorentz generator Φ 0 P 2 I 1 I 2 Type Killing vector αβ a Γ xy b 2 + a 2 ∂ αβ + b Γ zu − 1 Kerr 2 ab ∂t αβ a Γ xy ∂t + ∂ ∂ a 2 αβ + b Γ zu light-like Kerr 0 2 ab ∂x αβ a Γ ty a 2 − b 2 ∂ αβ + b Γ zu tachyonic Kerr +1 2 ab ∂x αβ Classification of Kerr-Schild solutions on 5d Minkowski space according to its Poincare invariants g mn = η mn + 2 µ H k m k n 15

  16. Projectors and Kerr-Schild vectors Projectors: αβ = 1 Π ± 2( ǫ αβ ± X αβ ) X αγ X γβ = δ αβ ⇒ X αβ = X βα , α γ Π ± γβ = Π ± α γ Π ∓ Π + αβ = − Π − Π ± Π ± αβ , γβ = 0 , βα . Light-like vectors: βδ v γδ ⇒ v + v + = v − v − = 0 βδ v γδ , v + αγ Π + v − αγ Π − αβ = Π + αβ = Π − Specify X αβ : X αβ = 1 r 2 = 1 ( Φ αβ + HΦ − 1 αβ ) , 2( H − Q ) 2 r 16

  17. Kerr-Schild vectors : v + v − v + v − = 1 αβ αβ 4 v + αβ v − αβ k αβ = v + v − , n αβ = v + v − , k a v a = n a v a = 1 , k a k a = n a n a = 0 geodetic condition: k a D a k b = n a D a n b = 0 Kerr-Schild vectors and massless fields φ a 1 ...a s = 1 Hk a 1 . . . k a s b = − Λ � φ a 1 ...a s − sD b D ( a 1 φ a 2 ...a s ) 2( s − 1 )( s + 2 ) φ a 1 ...a s Black holes mn + 2 µ g mn = g 0 H k m k n 17

  18. Towards higher-spin BH • d=4 – Static BPS HS black hole (V.D, M.A. Vasiliev, 2009) • d=4 – D-type class of solutions (C. Iazeolla, P. Sundell, 2011) • d=3 HS asymptotic symmetries (M. Henneaux, S-J. Rey, ⊕ A. Campoleoni, S. Fredenhagen, S. Pfenninger, S. Theisen, 2010) • d=3 – Static sl (3) ⊕ sl (3) black hole (M. Gutperle, P. Kraus, 2011) sl ( N ) ⊕ sl ( N ), hs ( λ ) ⊕ hs ( λ ) – great deal of interest 18

  19. GR SUGRA HS → → black holes black holes black holes ??? Obstacles: 1. HS does not have decoupled spin-2 sector → all higher spins involved in the equations of motion. 2. The interval ds 2 = g µν dx µ dx ν is not gauge invariant quantity in higher spin algebra. Perturbative analysis available HS 0-th order 1-st order free field 2-nd order → → → theory vacua AdS Fronsdal equations interactions → . . . Program for HS black holes vacuum black hole HS → → → . . . AdS 4 massless fields φ µ 1 ...µ s ( x ) corrections 19

  20. Kerr-Schild fields from free HS theory 20

  21. • Free HS equations y | x ) = � ∞ α ( m ) y α . . . y α ¯ α . . . ¯ 1 HS field strengths y ˙ y ˙ α C ( y, ¯ n ! m ! C α ( n ) , ˙ n,m =0 ∞ � α ( m ) y α . . . y α ¯ α . . . ¯ 1 HS potentials y ˙ y ˙ α w ( y, ¯ y | x ) = n ! m ! w α ( n ) , ˙ n,m =0 Equations of motion: ˜ D 0 C ≡ dC − w 0 ⋆ C + C ⋆ ˜ ← twisted-adjoint w 0 = 0 D 0 w ≡ dw − [ w 0 , w ] ⋆ = R 1 ( C ) ← adjoint ˜ f ( y, ¯ y ) = f ( − y, ¯ y ) ← twist operator w 0 ( y , ¯ y | x ) − AdS 4 vacuum connection matter fields: scalar s = 0 → C ( x ) , fermion s = 1 / 2 → C α ( x ) ⊕ ¯ C ˙ α ( x ) HS fields: potentials → ω α ( s − 1) , ˙ α ( s − 1) , strengths → C α (2 s ) ⊕ ¯ C ˙ α (2 s ) 21

  22. • Star-product operation Let Y A = ( y α , ¯ y ˙ α ) be commuting variables. � f ( Y + U ) g ( Y + V ) e U A V A dUdV − ( f ⋆ g )( Y ) = → associative algebra with [ Y A , Y B ] ⋆ = − 2 ǫ AB 22

  23. • AdS 4 vacuum Introduce 1-form w 0 ∈ o (3 , 2) ∼ sp (4) w 0 = − 1 8( ω αα y α y α + ¯ α − 2 λ e α ˙ y ˙ y ˙ y ˙ α ¯ α y α ¯ α ) , ω ˙ α ¯ dw 0 − w 0 ⋆ ∧ w 0 = 0 α ˙ Equiv. to 2 ω αγ ∧ ω γα = λ 2 dω αα + 1 γ ∧ e α ˙ γ → AdS 4 Riemann tensor 2 e α ˙ α + 1 α + 1 2 ω αγ e γ ˙ α ˙ γ h α ˙ → d e α ˙ 2¯ ω ˙ γ = 0 zero torsion 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend