black hole degeneracies from the effective action
play

Black hole Degeneracies from the effective action Guillaume Bossard - PowerPoint PPT Presentation

Black hole Degeneracies from the effective action Guillaume Bossard CPHT, Ecole Polytechnique Texas A & M, April 2018 Outline Heterotic CHL strings and U-duality Protected couplings beyond perturbation theory Decompactification limit and


  1. Black hole Degeneracies from the effective action Guillaume Bossard CPHT, Ecole Polytechnique Texas A & M, April 2018

  2. Outline Heterotic CHL strings and U-duality Protected couplings beyond perturbation theory Decompactification limit and BPS black hole degeneracies [ G. Bossard, C. Cosnier-Horeau, B. Pioline, 1608.01660 ] [ G. Bossard, C. Cosnier-Horeau, B. Pioline, 1702.01926 ] [ G. Bossard, C. Cosnier-Horeau, B. Pioline, 1805.xxxxx ]

  3. Motivations Exact black hole degeneracies from amplitude computations Pioline conjecture: 3D BPS protected amplitudes 4D BPS black holes Black hole degeneracies: Fourier coefficients of modular forms Provides G 3 ⊃ G 4 modular forms generating functions N = 8 supergravity: ∇ 6 R 4 couplings and 1 8 BPS black holes N = 6 supergravity: ∇ 2 R 4 couplings and 1 6 BPS black holes N = 4 supergravity: ∇ 2 F 4 couplings and 1 4 BPS black holes Automorphic representation of the coupling from supersymmetry G 3 nilpotent orbit associated to the black hole solution Explicit for N = 4 string vacua with a notion of S-duality Orbifolds with balanced frame shape: Fricke S-duality

  4. Heterotic string theory on T 6 At a generic point in moduli space N = 4 supergravity with scalar manifold SL (2) / SO (2) × SO (6 , 22) / ( SO (6) × SO (22)) with electric and magnetic charges ( Q , P ) in Λ 6 , 22 ∼ I 6 , 6 ⊕ E 8 ⊕ E 8 = I Also realized as type II on K3 × T 2 Heterotic axion-dilaton S Complex structure U on T 2 in type IIB ahler structure T = B + iV on T 2 in type IIA K¨ T-duality O (6 , 22 , Z ) and S-duality SL (2 , Z ) (T-duality in type II)

  5. CHL orbifolds Chauduri, Hockney, Lykken orbifolds: Z N automorphism of the lattice and shift on a circle. ex: Permutation of the two E 8 factors and Z 2 shift on the circle. 48 For N prime one gets SO (6 , N +1 − 2) with [ Persson, Volpato] Λ 6 , 22 = I I 6 , 6 ⊕ E 8 ⊕ E 8 Λ 6 , 14 = I 5 , 5 ⊕ I I 1 , 1 [ 2 ] ⊕ E 8 [ 2 ] I Λ 6 , 10 = I I 3 , 3 ⊕ I I 3 , 3 [ 3 ] ⊕ A 2 ⊕ A 2 I 3 , 3 ⊕ I Λ 6 , 6 = I I 3 , 3 [ 5 ] � − 4 � − 1 Λ 6 , 4 = I I 2 , 2 ⊕ I I 2 , 2 [ 7 ] ⊕ − 1 − 2   − 2 0 − 1 0 Λ 6 , 2 = I 1 , 1 ⊕ I I 1 , 1 [ 11 ] ⊕ I   0 − 2 0 − 1     − 1 0 − 6 0 − 1 − 6 0 0 → � N i =1 Λ so ( P , P ) → N ( P , P ). Λ[ N ] diagonal embedding Λ ֒ I I 1 , 1 [ N ] is the lattice of momentum m = 0[ N ] and n ∈ Z .

  6. U-duality group At most: Γ ⊂ SL (2 , R ) × O (6 , p ) that preserves Λ ∗ 6 , p ⊕ Λ 6 , p At least: Heterotic T-duality O (6 , p , Z ) automorphism of Λ 6 , p that stabilizes Λ ∗ ˜ 6 , p / Λ 6 , p Type II T-duality I 1 , 1 [ N ] that stabilizes Λ ∗ / Λ Γ 1 ( N ) × Γ 1 ( N ) automorphism of Λ= I I 1 , 1 ⊕ I Γ 1 ( N ) × ˜ O (6 , p , Z ) ⊂ Γ

  7. U-duality group At most: Γ ⊂ SL (2 , R ) × O (6 , p ) that preserves Λ ∗ 6 , p ⊕ Λ 6 , p At most: Heterotic T-duality O (6 , p , Z ) automorphism of Λ ∗ 6 , p Type II T-duality Γ 0 ( N ) × Γ 0 ( N ) ∪ F ⊗ F automorphism of Λ= I I 1 , 1 ⊕ I I 1 , 1 [ N ] Γ 1 ( N ) × ˜ O (6 , p , Z ) ⊂ Γ 0 ( N ) × O (6 , p , Z ) ⊂ Γ Fricke duality F ⊗ σ ∈ Γ � � � � � 0 � � 0 � − 1 − 1 − 1 0 0 √ √ − 1 √ √ N ⊗ N = ⊗ N N 0 1 0 0 0 N N

  8. U-duality group N-modular lattice (1-modular is selfdual) Λ 6 , p There exists σ ∈ O (6 , p ) such that σ Λ ∗ √ 6 , p = Λ 6 , p N then Fricke S-duality √ � � − σ S → − 1 N σ − 1 Q √ ( Q , P ) → P , , NS N

  9. 1/2 BPS couplings For SL (2) × SO (6 , p ) with k = p +2 24 = 2 N +1 � � 1 � d 4 x √− g log( S k − 1 2 | ∆ k ( S ) | 2 ) 8 R µνσρ R µνσρ +3 t 8 F a F b F a F b 8 π 2 � d 4 x √− gF abcd ( φ ) t 8 F a F b F c F d + with the weight k Γ 0 ( N ) cusp form ∆ k ( τ ) = η k ( τ ) η k ( N τ ) and � d 2 τ 1 F abcd ( φ ) = ∆ k ( τ )Γ Λ 6 , p [ P abcd ] τ 2 Γ 0 ( N ) \H + 2 with (function of V ( φ ) ∈ SO (6 , p ) / ( SO (6) × SO ( p )) through the left and right projections, with Q 2 L − Q 2 R = ( Q , Q ) and Q 2 L + Q 2 R = | V ( φ ) Q | 2 ) � � � 3 3 e i πτ Q 2 τ Q 2 Γ Λ6 , p [ P abcd ] = τ 3 L − i π ¯ Q La Q Lb Q Lc Q Ld − δ ( ab Q Lc Q Ld ) + (4 πτ 2 ) 2 δ ( ab δ cd ) R 2 2 πτ 2 Q ∈ Λ6 , p

  10. 1/2 BPS couplings ∆ k ( τ ) = η k ( τ ) η k ( N τ ) is Fricke invariant √ ∆ k ( − 1 N τ ) k ∆ k ( τ ) N τ ) = ( − i and so the effective action is invariant under S → − 1 NS and V ( φ ) → V ( φ ) σ , and � d 2 τ 1 F abcd ( φ σ ) = ∆ k ( τ )Γ σ Λ 6 , p [ P abcd ] τ 2 Γ 0 ( N ) \H + 2 � d 2 τ 1 ∆ k ( τ )Γ √ = 6 , p [ P abcd ] N Λ ∗ τ 2 Γ 0 ( N ) \H + 2 = F abcd ( φ )

  11. Heterotic string theory on T 7 At a generic point in moduli space N = 8 supergravity with scalar manifold SO (8 , 24) / ( SO (8) × SO (24)) with U-duality group, the automorphism group O (8 , 24 , Z ) of I 8 , 8 ⊕ E 8 ⊕ E 8 I [ Sen] Not the solitons, monodromy of the scalars modulo O (8 , 24 , Z ) In general Γ 4 × O (7 , 1 + p , Z ) ֒ → O (8 , 2 + p , Z ) the automorphism group of the N-modular non-perturbative lattice Λ 8 , p +2 = I I 1 , 1 ⊕ I I 1 , 1 [ N ] ⊕ Λ 6 , p

  12. Non-pertubative couplings Supersymmetry implies differential equations O (8 , 2 + p , Z ) invariance Boundary conditions: cusps (perturbative g s → 0 and decompactification R → ∞ ) singularities (surfaces of enhanced gauge symmetry) Determines the non-perturbative BPS couplings 1/2 BPS ( ∇ φ ) 4 : 1-loop � d 2 τ 1 F αβγδ ( φ ) = ∆ k ( τ )Γ Λ 7 , p +1 [ P αβγδ ] τ 2 Γ 0 ( N ) \H + 2 1/4 BPS ( ∇ 2 φ )( ∇ φ ) 2 : 2-loop � d 6 Ω 1 G αβ,γδ ( φ ) = Φ k − 2 (Ω)Γ Λ 7 , p +1 [ P αβ,γδ ] ( det Ω 2 ) 3 Γ 0 ( N ) \H +

  13. Non-pertubative couplings Supersymmetry implies differential equations O (8 , 2 + p , Z ) invariance Boundary conditions: cusps (perturbative g s → 0 and decompactification R → ∞ ) singularities (surfaces of enhanced gauge symmetry) Determines the non-perturbative BPS couplings [ Obers Pioline] 1/2 BPS ( ∇ φ ) 4 : � d 2 τ 1 F abcd ( φ ) = ∆ k ( τ )Γ Λ 8 , p +2 [ P abcd ] τ 2 Γ 0 ( N ) \H + 2 1/4 BPS ( ∇ 2 φ )( ∇ φ ) 2 : � d 6 Ω 1 G ab , cd ( φ ) = Φ k − 2 (Ω)Γ Λ 8 , p +2 [ P ab , cd ] ( det Ω 2 ) 3 Γ 0 ( N ) \H +

  14. At large radius � � � � 3 F (8 , p +2) R 2 log( S k 2 | ∆ k ( S ) | 4 ) − 2 k log R δ ( αβ δ γδ ) + ˆ F (6 , p ) = − αβγδ ( φ ) αβγδ 2(2 π ) 2 P ( ℓ ) 2 � � αβδγ ( Q L , P L ) K 2 − ℓ (2 π R M ( Q R , P R )) R 4 ¯ e 2 π i ( Q · a 1+ P · a 2) +4 c ( Q , P ) R 2 ℓ M ( Q R , P R ) 2 − ℓ ( Q , P ) ∈ Λ ∗ ℓ =0 6 , p ⊕ Λ6 , p Q ∧ P =0 � � � e 2 π i ( P · a 2+ M 1( ψ − 1 2 a 1 · a 2)+( M 2 − a 1 · P + 1 F M 1 2 ( a 1 · a 1) M 1) S 1) P − M 1 a 1 , M 2 − a 1 · P + 1 + 2 ( a 1 · a 1) M 1 αβγδ M 1 � =0 , M 2 P ∈ Λ6 , p with � 2 π � 3 P ( ℓ ) ˜ 2 � αβγδ ( P L ) 2 − ℓ αβγδ ( P , M 2 ) = 4 ( R 2 S 2 ) 3 ¯ F M 1 c ( M 1 , M 2 , P ) 2 − ℓ ( S cl ) K 3 ( R 2 S 2 ) ℓ S cl ℓ =0 ∆ k ( τ ) = � 1 m ≥− 1 c k ( m ) e 2 π im τ ) and the instanton measure ( � � � � � � − gcd( NQ 2 , P 2 , Q · P ) − gcd( NQ 2 , P 2 , Q · P ) c k ( Q , P ) = ¯ c k + c k d 2 Nd 2 d ≥ 1 d ≥ 1 ( Q , P ) / d ∈ Λ ∗ ( Q , P ) / d ∈ Λ 6 , p ⊕ N Λ ∗ 6 , p ⊕ Λ 6 , p 6 , p

  15. At large radius � � � � 3 F (8 , p +2) R 2 log( S k 2 | ∆ k ( S ) | 4 ) − 2 k log R F (6 , p ) δ ( αβ δ γδ ) + ˆ = − αβγδ ( φ ) αβγδ 2(2 π ) 2 P ( ℓ ) 2 � � αβδγ ( Q L , P L ) K 2 − ℓ (2 π R M ( Q R , P R )) R 4 ¯ e 2 π i ( Q · a 1+ P · a 2) +4 c ( Q , P ) R 2 ℓ M ( Q R , P R ) 2 − ℓ ( Q , P ) ∈ Λ ∗ ℓ =0 6 , p ⊕ Λ6 , p Q ∧ P =0 � � � e 2 π i ( P · a 2+ M 1( ψ − 1 2 a 1 · a 2)+( M 2 − a 1 · P + 1 F M 1 2 ( a 1 · a 1) M 1) S 1) P − M 1 a 1 , M 2 − a 1 · P + 1 + 2 ( a 1 · a 1) M 1 αβγδ M 1 � =0 , M 2 P ∈ Λ6 , p with � 2 π � 3 P ( ℓ ) 2 ˜ � 2 − ℓ αβγδ ( P L ) αβγδ ( P , M 2 ) = 4 ( R 2 S 2 ) 3 ¯ F M 1 c ( M 1 , M 2 , P ) K 3 2 − ℓ ( S cl ) ( R 2 S 2 ) ℓ S cl ℓ =0 ∆ k ( τ ) = � 1 m ≥− 1 c k ( m ) e 2 π im τ ) and the instanton measure ( − gcd( NQ 2 , P 2 , Q · P ) � � � � c k ( Q , P ) = ¯ c k nd 2 d ≥ 1 n | N ( Q , P ) / d ∈ Λ ∗ 6 , p [ n ] ⊕ Λ 6 , p [ n ]

  16. At large radius � 3 � � ˆ E 1 ( NS ) + ˆ � E 1 ( S ) + k F (8 , p +2) R 2 F (6 , p ) δ ( αβ δ γδ ) + ˆ = 2 π log R αβγδ ( φ ) αβγδ 2 π N + 1 P ( ℓ ) 2 � � αβδγ ( Q L , P L ) K 2 − ℓ (2 π R M ( Q R , P R )) R 4 ¯ e 2 π i ( Q · a 1+ P · a 2) +4 c ( Q , P ) R 2 ℓ M ( Q R , P R ) 2 − ℓ ( Q , P ) ∈ Λ ∗ ℓ =0 6 , p ⊕ Λ6 , p Q ∧ P =0 � � � e 2 π i ( P · a 2+ M 1( ψ − 1 2 a 1 · a 2)+( M 2 − a 1 · P + 1 F M 1 2 ( a 1 · a 1) M 1) S 1) P − M 1 a 1 , M 2 − a 1 · P + 1 + 2 ( a 1 · a 1) M 1 αβγδ M 1 � =0 , M 2 P ∈ Λ6 , p with � 2 π � 3 P ( ℓ ) ˜ 2 � αβγδ ( P L ) 2 − ℓ αβγδ ( P , M 2 ) = 4 ( R 2 S 2 ) 3 ¯ F M 1 c ( M 1 , M 2 , P ) K 3 2 − ℓ ( S cl ) ( R 2 S 2 ) ℓ S cl ℓ =0 ∆ k ( τ ) = � 1 m ≥− 1 c k ( m ) e 2 π im τ ) and the instanton measure ( � − gcd( NQ 2 , P 2 , Q · P ) � � � c k ( Q , P ) = ¯ c k nd 2 d ≥ 1 n | N ( Q , P ) / d ∈ Λ ∗ 6 , p [ n ] ⊕ Λ 6 , p [ n ]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend