bayesian statistical parameter synthesis for linear
play

Bayesian Statistical Parameter Synthesis for Linear Temporal - PowerPoint PPT Presentation

Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models Luca Bortolussi 1 Simone Silvetti 2,3 1DMG, University of Trieste, Trieste, Italy lbortolussi@units.it 2DIMA, University of Udine, Udine, Italy 3Esteco


  1. Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models Luca Bortolussi 1 Simone Silvetti 2,3 1DMG, University of Trieste, Trieste, Italy lbortolussi@units.it 2DIMA, University of Udine, Udine, Italy 3Esteco SpA, Area Science Park, Trieste, Italy simone.silvetti@gmail.com 24th International Conference on Tools and Algorithms for the Construction and Analysis of Systems L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 1 / 25

  2. Outline Introduction 1 Parametric Chemical Reaction Networks Signal Temporal Logic Verification: a statistical approach Bayesian Threshold Synthesis Problem 2 Definition Algorithm Test Case and Results 3 Conclusions and Future Works 4 L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 2 / 25

  3. Introduction Parametric Chemical Reaction Networks Models: Parametric Chemical Reaction Networks Consider a Parametric Chemical Reaction Network (PCRN) as a tuple M = ( S , X , D , x 0 , R , Θ) α 1 = k i · X s · X i α 1 r 1 : S + I − − → 2 I N α 2 r 2 : I − − → R α 2 = k r · X i θ = ( θ 1 , . . . , θ k ) is the vector of (kinetic) parameters, taking values in a compact hyperrectangle Θ ⊂ R k a trajectory is a function x θ : T → D L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 3 / 25

  4. Introduction Signal Temporal Logic The requirements: Signal Temporal Logic (STL) Signal temporal logic is: a linear continuous time temporal logic. the atomic predicates are of the form µ ( X ):=[ g ( X ) ≥ 0 ] where g : R n → R is a continuous function. the syntax is φ := ⊥ | ⊤ | µ | ¬ φ | φ ∨ φ | φ U [ T 1 , T 2 ] φ, (1) Eventually and Globally Operators F [ T 1 , T 2 ] φ ≡ ⊤ U [ T 1 , T 2 ] φ and G [ T 1 , T 2 ] φ ≡ ¬ F [ T 1 , T 2 ] ¬ φ Interpretation (Boolean semantics) ( x θ , 0 ) | = F [ 0 , 50 ] | X 1 − X 2 | > 10 L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 4 / 25

  5. Introduction Verification: a statistical approach Verification Problem Which is the probability that a trajectory x θ generated by M θ satisfies φ ∈ STL ? P φ ( θ ) ≡ P ( φ | M θ ) := P ( { x θ ( t ) ∈ Path M θ | ( x θ , 0 ) | = φ } ) L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 5 / 25

  6. Introduction Verification: a statistical approach Verification Problem Which is the probability that a trajectory x θ generated by M θ satisfies φ ∈ STL ? P φ ( θ ) ≡ P ( φ | M θ ) := P ( { x θ ( t ) ∈ Path M θ | ( x θ , 0 ) | = φ } ) Classical Verification compute or estimate the satisfaction probability P φ ( θ ) for a fixed θ L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 5 / 25

  7. Introduction Verification: a statistical approach Verification Problem Which is the probability that a trajectory x θ generated by M θ satisfies φ ∈ STL ? P φ ( θ ) ≡ P ( φ | M θ ) := P ( { x θ ( t ) ∈ Path M θ | ( x θ , 0 ) | = φ } ) Parametric Verification Classical Verification compute or estimate the satisfaction compute or estimate the satisfaction probability P φ ( θ ) as a function of θ ∈ probability P φ ( θ ) for a fixed θ Θ . L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 5 / 25

  8. Introduction Verification: a statistical approach Verification Problem Which is the probability that a trajectory x θ generated by M θ satisfies φ ∈ STL ? P φ ( θ ) ≡ P ( φ | M θ ) := P ( { x θ ( t ) ∈ Path M θ | ( x θ , 0 ) | = φ } ) Parametric Verification Classical Verification compute or estimate the satisfaction compute or estimate the satisfaction probability P φ ( θ ) as a function of θ ∈ probability P φ ( θ ) for a fixed θ Θ . Numerical approaches Numerical Integration ⇒ STATE SPACE EXPLOSION! L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 5 / 25

  9. Introduction Verification: a statistical approach Verification Problem Which is the probability that a trajectory x θ generated by M θ satisfies φ ∈ STL ? P φ ( θ ) ≡ P ( φ | M θ ) := P ( { x θ ( t ) ∈ Path M θ | ( x θ , 0 ) | = φ } ) Parametric Verification Classical Verification compute or estimate the satisfaction compute or estimate the satisfaction probability P φ ( θ ) as a function of θ ∈ probability P φ ( θ ) for a fixed θ Θ . Statistical Approaches Statistical Model Checking (SMC) Smoothed Model Checking (SmMC) L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 6 / 25

  10. Introduction Verification: a statistical approach Gaussian Processes Definition A random variable f ( θ ) , θ ∈ Θ is a GP f ∼ GP ( m , k ) ⇐ ⇒ ( f ( θ 1 ) , f ( θ 2 ) , . . . , f ( θ n )) ∼ N ( m , K ) where m = ( m ( θ 1 ; h 1 ) , m ( θ 2 ; h 1 ) , . . . , m ( θ n ; h 1 )) and K ij = k ( f ( θ i ) , f ( θ j ); h 2 ) Prediction , f ( θ ′ ) } ∼ N ( m ′ , K ′ ) { f ( θ 1 ) , . . . , f ( θ n ) � �� � f · K − 1 · f E ( f ( θ ′ )) = ( k ( θ 1 , θ ′ ) , . . . , k ( θ N , θ ′ , )) � �� � k var ( f ( θ ′ )) = k ( θ ′ , θ ′ ) − k · K − 1 · k T L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 7 / 25

  11. Introduction Verification: a statistical approach Smoothed Model Checking Hypothesis: The reaction rate α j ( x , θ ) depends smoothly on θ and polynomially on x . Goal: Approximate θ → P φ ( θ ) with a surrogate model θ → ˜ P φ ( θ ) . Problem: We cannot apply GP directly. L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 8 / 25

  12. Introduction Verification: a statistical approach Smoothed Model Checking Hypothesis: The reaction rate α j ( x , θ ) depends smoothly on θ and polynomially on x . Goal: Approximate θ → P φ ( θ ) with a surrogate model θ → ˜ P φ ( θ ) . Problem: We cannot apply GP directly. Idea Reconstructing a real-valued latent function f ( θ ) , which is related to P φ ( θ ) and which can be approximated through GP regression. � f ( θ ) ( P φ ( θ )) ⇐ ⇒ P φ ( θ ) = N ( 0 , 1 ) f ( θ ) = Ψ ���� −∞ probit L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 8 / 25

  13. Introduction Verification: a statistical approach Smoothed Model Checking Hypothesis: The reaction rate α j ( x , θ ) depends smoothly on θ and polynomially on x . Goal: Approximate θ → P φ ( θ ) with a surrogate model θ → ˜ P φ ( θ ) . Problem: We cannot apply GP directly. Idea Reconstructing a real-valued latent function f ( θ ) , which is related to P φ ( θ ) and which can be approximated through GP regression. � f ( θ ) ( P φ ( θ )) ⇐ ⇒ P φ ( θ ) = N ( 0 , 1 ) f ( θ ) = Ψ ���� −∞ probit Statistical Surrogates Model From { P φ ( θ 1 ) , . . . , P φ ( θ n ) } we obtain ˜ P φ ( θ ) as a statistical surrogate models of P φ ( θ ) . � � ˜ P φ ( θ ) ∈ [ λ − , λ + ] we can calculate: p , mean, variance, etc. large training set ⇒ a more accurate model. L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 8 / 25

  14. Bayesian Threshold Synthesis Problem Problem Definition Partitioning the parameter space Θ in three classes P α (positive), N α (negative) and U α (undefined) Threshold Synthesis Problem - ˇ Ceška et al. 1 P α = { θ ∈ Θ | P φ ( θ ) > α } N α = { θ ∈ Θ | P φ ( θ ) < α } U α = Θ \ ( P α ∪ N α ) , vol ( U α ) vol (Θ) < ǫ . 1 M. ˇ Ceška, F. Dannenberg, N. Paoletti, M. Kwiatkowska and L. Brim, Precise parameter synthesis for stochastic biochemical systems, Acta Informatica 56(6), 2017, 589 - 623. L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 9 / 25

  15. Bayesian Threshold Synthesis Problem Problem Definition Partitioning the parameter space Θ in three classes P α (positive), N α (negative) and U α (undefined) Bayesian Threshold Synthesis Problem P α = { θ ∈ Θ | ˜ P φ ( θ ) > α } N α = { θ ∈ Θ | ˜ P φ ( θ ) < α } U α = Θ \ ( P α ∪ N α ) , vol ( U α ) vol (Θ) < ǫ . L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 10 / 25

  16. Bayesian Threshold Synthesis Problem Problem Definition Partitioning the parameter space Θ in three classes P α (positive), N α (negative) and U α (undefined) Bayesian Threshold Synthesis Problem P α = { θ ∈ Θ | p (˜ P φ ( θ ) > α ) > δ } N α = { θ ∈ Θ | p (˜ P φ ( θ ) < α ) > δ } U α = Θ \ ( P α ∪ N α ) , vol ( U α ) vol (Θ) < ǫ . L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 11 / 25

  17. Bayesian Threshold Synthesis Problem Definition Problem Definition Bayesian Threshold Synthesis Problem Lower and Upper Bound functions P α = { θ ∈ Θ | p (˜ P φ ( θ ) > α ) > δ } � � ˜ P φ ( θ ) < λ + ( θ, δ ) p > δ N α = { θ ∈ Θ | p (˜ P φ ( θ ) < α ) > δ } � � ˜ P φ ( θ ) > λ − ( θ, δ ) p > δ U α = Θ \ ( P α ∪ N α ) , vol ( U α ) vol (Θ) < ǫ . δ ∈ ( 0 , 1 ) is the confidence probability. L. Bortolussi, S. Silvetti TACAS 2018 April 19, 2018 12 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend