bayesian method for repeated threshold estimation
play

Bayesian Method for Repeated Threshold Estimation Alexander Petrov - PowerPoint PPT Presentation

Bayesian Method for Repeated Threshold Estimation Alexander Petrov Department of Cognitive Sciences University of California, Irvine Supported by NIMH and NSF grants to Prof. Barbara Dosher Motivation: Perceptual Learning Non-stationary


  1. Bayesian Method for Repeated Threshold Estimation Alexander Petrov Department of Cognitive Sciences University of California, Irvine Supported by NIMH and NSF grants to Prof. Barbara Dosher

  2. Motivation: Perceptual Learning � Non-stationary thresholds � Dynamics of learning is important � Must use naïve observers � Low motivation � high lapsing rates � Slow learning � many sessions � Large volume of low-quality binary data http://www.socsci.uci.edu/~apetrov/

  3. Objective: Data Reduction http://www.socsci.uci.edu/~apetrov/

  4. Isn’t This a Solved Problem? � Up/down (Levitt, 1970) � PEST (Taylor & Creelman, 1967) � BEST PEST (Pentland, 1980) � QUEST (Watson & Pelli, 1979) � ML-Test (Harvey, 1986) � Ideal (Pelli, 1987) � YAAP (Treutwein, 1989) � and many others… http://www.socsci.uci.edu/~apetrov/

  5. We Solve a Different Problem � Standard methods: � Adaptive stimulus placement � Stopping criterion � Threshold estimation � Our method: � Threshold estimation � Integrate information across blocks http://www.socsci.uci.edu/~apetrov/

  6. Weibull Psychometric Function α β = − − − α β ( ; , ) 1 exp( exp((log log ) )) W x x α β γ λ = γ + − γ − λ α β ( ; , , , ) (1 ) ( ; , ) P x W x 1- λ � Threshold log α � Slope β � Guessing rate γ γ � Lapsing rate λ log α logx http://www.socsci.uci.edu/~apetrov/

  7. Two Kinds of Parameters � Threshold log α Parameters of interest θ � Slope β � Guessing rate γ Nuisance parameters φ � Lapsing rate λ The nuisance parameters are harder to estimate but change more slowly than the threshold parameter. http://www.socsci.uci.edu/~apetrov/

  8. Get the Best of Both Worlds Use long data sequences to constrain the nuisance parameters; use short sequences to estimate the thresholds. http://www.socsci.uci.edu/~apetrov/

  9. Joint Posterior of θ k , φ θ φ = … … ( , | ; , ) p y y y y y − + 1 1 1 k k k k n ∏∫ θ φ θ φ θ θ φ θ ( | , ) ( ) ( ) ( ) ( | , ) p p p p p d y y k k k i i i i ≠ i k Information about φ extracted Likelihood of Priors from the other data sets current data Modified prior for the current block http://www.socsci.uci.edu/~apetrov/

  10. Two-Pass Algorithm � Pass 1: for each block i, calculate = ∫ φ θ θ φ θ ( | ) ( ) ( | , ) p p p d y y i i � Pass 2: for each block k, calculate ∏∫ θ φ = θ φ θ φ φ ( , | ) ( | , ) ( ) ( ) ( | ) p p p p p y y y k k k k k i ≠ i k http://www.socsci.uci.edu/~apetrov/

  11. Posterior Thresholds = ∫ − θ φ θ φ θ φ 1 ( ) (.75; , ) ( , | ) p T P p d d y k k k k k posterior normal Posterior density -3 -2.5 -2 -1.5 -1 -0.5 0 75% threshold http://www.socsci.uci.edu/~apetrov/

  12. Some Details � Vaguely informative priors: α ∝ µ σ (log ) N( , ) p α α β ∝ µ σ ( ) N( , ) p β β λ ∝ ( ) Beta( , ) p a b λ λ � Implemented on a grid: log α x β x λ � Assume γ =.5 for 2AFC data � MATLAB software available at http://www.socsci.uci.edu/~apetrov/ http://www.socsci.uci.edu/~apetrov/

  13. Simulation 1: Stationary α = − = log 1.204 const β = 1.5 λ = .10 T = − 1.217 75 http://www.socsci.uci.edu/~apetrov/

  14. Stimulus Placement � 2 interleaved 0 staircases -0.5 log intensity � 100 trials/block -1 � 10 catch -1.5 � 40 x 3down/1up � 50 x 2down/1up -2 0 20 40 60 80 100 trial number � 100 runs of 12 blocks each http://www.socsci.uci.edu/~apetrov/

  15. Threshold Estimators Estimator Mean Med Std ML median ML -1.24 -1.23 .27 mean true Median -1.26 -1.23 .28 Frequency Mean -1.30 -1.27 .31 Std. dev. 0.41 0.36 .15 1200 Monte Carlo estimates True 75% threshold = -1.217 -3 -2.5 -2 -1.5 -1 -0.5 0 Estimated threshold http://www.socsci.uci.edu/~apetrov/

  16. β x λ Distribution from Pass 1 1 5 true β and λ ML β and λ 0.9 4 Slope BETA 0.8 P(correct) 3 0.7 2 0.6 1 0.5 0.05 0.1 0.15 0.2 -4 -3 -2 -1 0 Lapsing rate LAMBDA log intensity http://www.socsci.uci.edu/~apetrov/

  17. Catch Trials Are Worthwhile Estimator Mean Med Std ML median ML -1.24 -1.22 .31 mean true Median -1.29 -1.26 .30 Frequency Mean -1.36 -1.33 .34 Std. dev. 0.58 0.57 .16 1200 Monte Carlo estimates No catch trials presented -3 -2.5 -2 -1.5 -1 -0.5 0 True 75% threshold = -1.217 Estimated threshold http://www.socsci.uci.edu/~apetrov/

  18. Simulation 2: With Learning − α = − − /800 t log 0.693 ( 2) e β = 1.5 λ = .10 0 -0.5 T75 -1 -1.5 -2 0 1000 2000 3000 4000 5000 6000 Trial number http://www.socsci.uci.edu/~apetrov/

  19. Group Learning Curve, N=100 0 True learning curve Reconstruction ± CI 95 -0.2 -0.4 -0.6 -0.8 ML threshold -1 -1.2 -1.4 -1.6 -1.8 -2 0 10 20 30 40 50 60 Block number http://www.socsci.uci.edu/~apetrov/

  20. More Realistic Sample, N=10 0 True learning curve Reconstruction ± CI 95 -0.2 -0.4 -0.6 -0.8 ML threshold -1 -1.2 -1.4 -1.6 -1.8 -2 0 10 20 30 40 50 60 Block number http://www.socsci.uci.edu/~apetrov/

  21. Individual Runs 0 0 0 -1 -1 -1 -2 -2 -2 0 0 0 -1 -1 -1 -2 -2 -2 http://www.socsci.uci.edu/~apetrov/

  22. The Method Performs Well Estimator Mean Med Std ML median ML -0.03 -0.02 .28 mean true Median -0.05 -0.03 .29 Frequency Mean -0.08 -0.05 .32 Std. dev. 0.42 0.39 .15 6000 Monte Carlo estimates Similar to the stationary case -1.5 -1 -0.5 0 0.5 1 No systematic bias over time Estimated threshold - true threshold http://www.socsci.uci.edu/~apetrov/

  23. Example: Actual Data, N=8 Jeter, Dosher, Petrov, & Lu (2005) 1 0.5 0 -0.5 75% threshold In high noise -1 -1.5 -2 In no noise -2.5 -3 0 2 4 6 8 10 12 14 16 Block number http://www.socsci.uci.edu/~apetrov/

  24. Future Work � Sensitivity to priors? � Compare with standard ML methods � Individual differences � Estimate slope in addition to threshold � Non-stationary β and λ ? � Recommended stimulus placement? � Hierarchical models http://www.socsci.uci.edu/~apetrov/

  25. The End http://www.socsci.uci.edu/~apetrov/

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend