baryogenesis through leptogenesis
play

Baryogenesis through Leptogenesis Mu-Chun Chen, University of - PowerPoint PPT Presentation

Baryogenesis through Leptogenesis Mu-Chun Chen, University of California at Irvine Giada Carminati for WPA Workshop on Search of New physics with Leptons, UNAM, October 17, 2018 Evidence of Matter-Antimatter Asymmetry CMB anisotropy T


  1. Baryogenesis through Leptogenesis Mu-Chun Chen, University of California at Irvine Giada Carminati for WPA Workshop on Search of New physics with Leptons, UNAM, October 17, 2018

  2. Evidence of Matter-Antimatter Asymmetry • CMB anisotropy ∆ T � = a lm Y lm ( θ , φ ) | a lm | 2 � � C l = T l,m • Big Bang Nucleosynthesis • primordial deuterium abundance ⟺ agree with WMAP • 4 He & 7 Li ⟺ discrepancies • WMAP + Deuterium Abundance n B ≡ η B = (6 . 1 ± 0 . 3) × 10 − 10 n γ 2 Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  3. Three Sakharov Conditions rs Universe Now Early Universe [Picture credit: H. Murayama] • Baryon number can be generated dynamically, if • violation of baryon number • violation of Charge (C) and Charge Parity (CP) • departure from thermal equilibrium 3 Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  4. Baryon Number Asymmetry beyond SM • Within the SM: ‣ CP violation in quark sector not su ffi cient to explain the observed matter- antimatter asymmetry of the Universe ‣ accidental symmetries L e , L μ , L τ , total L ‣ massless neutrinos, no cLFV • neutrino oscillation ⇒ non-zero neutrino masses • physics beyond the Standard Model • new CP phases in the neutrino sector • neutrino masses open up a new possibility for baryogenesis Fukugita, Yanagida, 1986 Leptogenesis 4 Mu-Chun Chen, UC Irvine Leptogenesis and Neutrino Masses

  5. Plans • Theoretical Foundation of Baryogenesis: • Sakharav’s Three Conditions • Mechanisms for Baryogenesis & Their Problems • Sources of CP violation • Standard Leptogenesis (“Majorana” Leptogenesis) • Dirac Leptogenesis • Gravitino Problem • Non-standard Scenarios • Resonant Leptogenesis • Soft Leptogenesis • Non-thermal Leptogenesis • Connection between leptogenesis & low energy CP violation Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  6. References • W. Büchmuller, hep-ph/0502169 • A. Riotto, hep-ph/9901362 • M. Trodden, hep-ph/0411301 • “TASI 2006 Lectures on Leptogenesis,” M.-C. Chen, hep- ph/0703087 Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  7. Three Sakharov Conditions Baryon Number Violation • necessary for baryon symmetric Universe (B=0) → Universe with B ≠ 0 • GUT theories: • quarks and leptons in same representations → B-violation naturally through interactions with gauge or scalar fields • SM: • B & L accidental symmetries • preserved at tree level • t’Hooft: non-perturbative instanton e ff ects (B+L) ≠ 0, (B-L) = 0 Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  8. Three Sakharov Conditions • Classically: B & L conserved • At quantum level, non-vanishing ABJ triangular anomaly through interactions with EW gauge fields � B µ ν � L = N f µ ν � W pµ ν − g � 2 B µ ν � ∂ µ J µ B = ∂ µ J µ g 2 W p 32 π 2 ⇒ (B+L) is violated • vacuum structure of non-abelian gauge theories: • changes in B & L ↔ changes in topological charges s, ∆ B = ∆ L = N f ∆ N cs = ± 3 n , � O B + L = ( q L i q L i q L i � L i ) , i =1 , 2 , 3 Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  9. Three Sakharov Conditions • 12 fermion Processes, e.g. u + d + c → d + 2 s + 2 b + t + ν e + ν µ + ν τ • T=0: transition rate negligible Kuzmin, Rubakov, Shaposhnikov y, Γ ∼ e − S int = e − 4 π / α = O (10 − 165 ) • In thermal bath: transition by thermal fluctuations • at T > height of barrier: no Boltzmann suppression = k M 7 Γ B + L • T < T ew : ( α T ) 3 e − β E ph ( T ) ∼ e − MW E sp ( T ) � 8 π W g � H ( T ) � α kT V ≥ • T > T ew : Γ B + L ∼ α 5 ln α − 1 T 4 ⇒ B-violating process V unsuppressed • Sphelaron process in thermal eq. T EW ∼ 100 GeV < T < T sph ∼ 10 12 GeV Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  10. Three Sakharov Conditions C and CP Violations process branching fraction ∆ B • superheavy X boson decay 2/3 X → qq α 1 − α -1/3 X → q � -2/3 X → qq α • Baryon number produced 1 − α 1/3 X → q � � 2 � � � − 1 = α − 1 B X = α + (1 − α ) 3 , 3 3 � � � 1 � � � − 2 α − 1 B X = α + (1 − α ) = − , 3 3 3 • net Baryon number � ≡ B X + B X = ( α − α ) • if CP is conserved: d, α = α , r, � = 0. • Toy Model: two heavy scalar fields: X, Y; 4 fermions f i L = g 1 Xf † 2 f 1 + g 2 Xf † 4 f 3 + g 3 Y f † 1 f 3 + g 4 Y f † 2 f 4 + h.c. • possible decays X → f 1 + f 2 , f 3 + f 4 , Y → f 3 + f 1 , f 4 + f 2 , Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  11. Three Sakharov Conditions f 3 f 4 f 3 • at tree level: f 1 Y Y X X g 3 g 4 g 1 g 2 → Γ ( X → f 1 + f 2 ) = | g 1 | 2 I X f 2 f 1 f 2 f 4 → 1 | 2 I X Γ ( X → f 1 + f 2 ) = | g ∗ phase space factor equal s I X and I X ⇒ no asymmetry • at one-loop ∗ g 3 ∗ g 3 g 2 g 2 f 3 f 1 f 3 f 4 f 3 f 1 f 3 f 4 X X Y Y g 2 g 1 g 4 g 3 Y Y X X f 4 f 2 f 2 f 1 f 2 f 1 f 2 f 4 ∗ ∗ g 4 g 1 g 1 g 4 → → I XY : phase space + kinematics Γ ( X → f 1 + f 2 ) = g 1 g ∗ 4 I XY + c.c. 2 g 3 g ∗ Γ ( X → f 1 + f 2 ) = g ∗ 1 g 2 g ∗ 3 g 4 I XY + c.c. Γ ( X → f 1 + f 2 ) − Γ ( X → f 1 + f 2 ) = 4 Im ( I XY ) Im ( g ∗ 1 g 2 g ∗ 3 g 4 ) → Γ ( X → f 3 + f 4 ) − Γ ( X → f 3 + f 4 ) = − 4 Im ( I XY ) Im ( g ∗ 1 g 2 g ∗ 3 g 4 ) Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  12. Three Sakharov Conditions • total asymmetry � X = ( B 1 − B 2 ) ∆Γ ( X → f 1 + f 2 ) + ( B 4 − B 3 ) ∆Γ ( X → f 3 + f 4 ) Γ X ( 4 Im ( I XY ) Im ( g ∗ 1 g 2 g ∗ � X = 3 g 4 )[( B 4 − B 3 ) − ( B 2 − B 1 )] Γ X 4 Im ( I � XY ) Im ( g ∗ 1 g 2 g ∗ � Y = 3 g 4 )[( B 2 − B 4 ) − ( B 1 − B 3 )] Γ Y • non-zero total asymmetry ε = ε X + ε Y • two B-violating bosons with masses > sum of loop fermion masses • complex coupling constants: CP violation from interference between tree and 1-loop diagrams • non-degenerate X and Y masses Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  13. Three Sakharov Conditions Departure from Thermal Equilibrium • B: odd under C and CP • in equilibrium: < B > T = Tr[ e − β H B ] = Tr[( CPT )( CPT ) − 1 e − β H B )] = Tr[ e − β H ( CPT ) − 1 B ( CPT )] = − Tr[ e − β H B ] ⇒ average <B> T = 0 • Possible ways to achieve departure from thermal equilibrium • out-of-equilibrium decay of heavy particles: • GUT baryogenesis, leptogenesis • EW phase transition: EW baryogenesis Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

  14. Three Sakharov Conditions • Leptogenesis: Out-of-equilibrium decay of heavy particles • superheavy particle X: decay rate Γ X , Mass M X • at T ~ M X : become non-relativistic • if Γ X < H: • X cannot decay on the time scale of the expansion xpansion. The X particles will then rem • remains thermal abundance e, n X = n X ∼ n γ ∼ T 3 , for T � M X . • at T > M X : interact so weakly, cannot catch up expansion • decouple from thermal bath while relativistic • populate at T ~ M X with abundance >> than in equilibrium • recall: in equilibrium n X = n X � n γ for T � M X , n X = n X � ( M X T ) 3 / 2 e − M X /T � n γ for T � M X Mu-Chun Chen, UC Irvine Baryogenesis through Leptogenesis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend