bandwidth allocation in large stochastic networks
play

Bandwidth Allocation in Large Stochastic Networks Mathieu Feuillet - PowerPoint PPT Presentation

Bandwidth Allocation in Large Stochastic Networks Mathieu Feuillet Soutenance de thse 12/07/2012 Introduction Modeling Traffic Performance Network Objectives: - Modeling - Design - Dimensioning 3 What Are We T alking About? - In a


  1. Model 1 1 βN files 3 2 2 2 copies/file 3 2 Back-up: λN A file with 0 copies is lost 24

  2. Model 1 1 βN files 3 2 copies/file 3 2 2 Back-up: λN A file with 0 copies is lost 24

  3. Model 1 1 βN files 3 2 copies/file 3 Back-up: λN A file with 0 copies is lost 24

  4. Model 1 1 1 βN files 3 2 copies/file 3 Back-up: λN 24

  5. Model 1 βN files 3 2 copies/file 3 3 Back-up: λN 24

  6. Model 1 βN files 3 3 2 copies/file Back-up: λN 24

  7. Model 1 1 βN files 2 copies/file Back-up: λN 24

  8. Model βN files ∅ 2 copies/file Back-up: λN What is the decay rate of the network? 24

  9. Model X i ( t ) : number of files with i copies at time t . ( X 0 ( t ) , X 1 ( t ) , X 2 ( t )) : a transient Markov Process. X 0 ( t ) + X 1 ( t ) + X 2 ( t ) = βN. A unique absorbing state ( βN, 0 , 0 ) . 2 μx 2 ( X 0 ( t )) ( X 1 ( t )) ( X 2 ( t )) μx 1 λN 1 { x 1 > 0 } 25

  10. Model X i ( t ) : number of files with i copies at time t . ( X 0 ( t ) , X 1 ( t ) , X 2 ( t )) : a transient Markov Process. X 0 ( t ) + X 1 ( t ) + X 2 ( t ) = βN. A unique absorbing state ( βN, 0 , 0 ) . 2 μ ( βN − x 0 − x 1 ) ( X 0 ( t )) ( X 1 ( t )) ( X 2 ( t )) μx 1 λN 1 { x 1 > 0 } 25

  11. Different Behaviors Three time scales:  t → t/N  t → t  t → Nt Three regimes: Overload: 2 β > ρ = λ/μ , Critical load: 2 β = ρ , Underload: 2 β < ρ . 26

  12. Time scale: t → t/N 2 μ ( βN − x 1 − x 0 ) N ( X 0 ( t/N )) ( X 1 ( t/N )) ( X 2 ( t/N )) x 1 λ 1 { x 1 > 0 } μ N 27

  13. Time scale: t → t/N � ergodic if 2 β < ρ, ( L 1 ( t )) : an M/M/ 1 queue transient if 2 β > ρ. 2 μβ ( L 1 ( t )) ∼ Nβ 0 λ 1 { x 1 > 0 } 28

  14. Time scale: t → t/N � ergodic if 2 β < ρ, ( L 1 ( t )) : an M/M/ 1 queue transient if 2 β > ρ. 2 μβ ( L 1 ( t )) ∼ Nβ 0 λ 1 { x 1 > 0 } No loss! 28

  15. Time scale: t → t Overloaded network If 2 β > ρ , ( X 0 ( t ) /N, X 1 ( t ) /N, X 2 ( t ) /N ) converges to a deterministic process ( x 0 ( t ) , x 1 ( t ) , x 2 ( t )) . x 2 ( t ) : 2 copies x 1 ( t ) : 1 copy β x 0 ( t ) : 0 copies λ 2 μ t 29

  16. Time scale: t → t Overloaded network If 2 β > ρ , ( X 0 ( t ) /N, X 1 ( t ) /N, X 2 ( t ) /N ) converges to a deterministic process ( x 0 ( t ) , x 1 ( t ) , x 2 ( t )) . x 2 ( t ) : 2 copies x 1 ( t ) : 1 copy β x 0 ( t ) : 0 copies λ 2 μ t A fraction N ( β − ρ/ 2 ) is lost! 29

  17. Time scale: t → t Underloaded network If 2 β < ρ , ( X 0 ( t ) /N, X 1 ( t ) /N, X 2 ( t ) /N ) converges to  = 0 , x 0 ( t )  = 0 , x 1 ( t )  x 2 ( t ) = β. λ 2 μ x 2 ( t ) : 2 copies β t 30

  18. Time scale: t → t Underloaded network If 2 β < ρ , ( X 0 ( t ) /N, X 1 ( t ) /N, X 2 ( t ) /N ) converges to  = 0 , x 0 ( t )  = 0 , x 1 ( t )  x 2 ( t ) = β. λ 2 μ x 2 ( t ) : 2 copies β t No significant loss! 30

  19. Time Scale t → Nt � X 0 ( Nt ) � lim = Ψ( t ) , N N → + ∞ where Ψ( t ) is the unique solution of � t 2 μ ( β − Ψ( s )) d s. Ψ( t ) = μ λ − 2 μ ( β − Ψ( s )) 0 31

  20. Time Scale t → Nt � X 0 ( Nt ) � lim = Ψ( t ) , N N → + ∞ where Ψ( t ) unique solution in ( 0 , β ) of ( 1 − Ψ( t ) /β ) ρ/ 2 e Ψ( t )+ t = 1 . β 0 copies t t → Nt is the “correct” time scale to describe 31 decay.

  21. A Stochastic Averaging Phenomenon ∼ N Ψ( t ) X 1 ,t ( ∞ ) ∼ N ( β − Ψ( t )) Fast time scale: At “time” Nt, ( X 1 ( Nt + u / N ) , u ≥ 0 ) : an M / M / 1 with transition rates: + 1 at rate 2 μ ( β − Ψ( t )) − 1 at rate λ. 32

  22. A Stochastic Averaging Phenomenon ∼ N Ψ( t ) X 1 ,t ( ∞ ) ∼ N ( β − Ψ( t )) Slow time scale: ( X 0 ( Nt ) /N ) “sees” only X 1 at equi- librium: � t � t 2 μ ( β − Ψ( s )) Ψ( t )” = ” μ E ( X 1 ,s ( ∞ )) d s = d s. λ − 2 μ ( β − Ψ( s )) 0 0 32

  23. T echnical Corner Step 1 Radon measures: tightness of ( μ N ) with � Nt 1 〈 μ N , g 〉 = � X N � g 1 ( s ) , s d s N 0 33

  24. T echnical Corner Step 1 Radon measures: tightness of ( μ N ) with � Nt 1 〈 μ N , g 〉 = � X N � g 1 ( s ) , s d s N 0 Step 2 Control of limits of ( μ N ) : � Nt � t 1 X N lim 1 ( s ) d s = Ψ( t ) = 〈 π s , I 〉 d s N → ∞ N 0 0 � t π s ( N ) d s = t 0 33

  25. T echnical Corner Step 1 Radon measures: tightness of ( μ N ) with � Nt 1 〈 μ N , g 〉 = � X N � g 1 ( s ) , s d s N 0 Step 2 Control of limits of ( μ N ) : � Nt � t 1 X N lim 1 ( s ) d s = Ψ( t ) = 〈 π s , I 〉 d s N → ∞ N 0 0 � t π s ( N ) d s = t 0 Here: Proof by stochastic domination 33

  26. T echnical Corner Step 1 Radon measures: tightness of ( μ N ) with � Nt 1 〈 μ N , g 〉 = � X N � g 1 ( s ) , s d s N 0 Step 2 Control of limits of ( μ N ) : � Nt � t 1 X N lim 1 ( s ) d s = Ψ( t ) = 〈 π s , I 〉 d s N → ∞ N 0 0 � t π s ( N ) d s = t 0 Here: Proof by stochastic domination Step 3 Identification of π s with martingale techniques and balance equations. 33

  27. Decay Rate of the Network � � t ≥ 0 : X N T N ( δ ) = inf 0 ( t ) ≥ δβN Theorem: T N ( δ ) ρ lim log ( 1 − δ ) − δβ. = − 2 N N → ∞ T N ( δ ) /N δ 34

  28. Conclusion - Three different time scales - A first example of stochastic averaging - Asymptotics on a transitory property. Extensions: - Number of copies: d > 2 ⇒ d − 1 times scales - Decentralized back-up (mean-field) Open problem: - Modeling a DHT: geometrical considerations 35

  29. Example 2: The Law of the Jungle

  30. Context Congestion control: - Rate adjustment to limit packet loss - Retransmission of lost packets 37

  31. Context Congestion control: - Rate adjustment to limit packet loss - Retransmission of lost packets No congestion control: - No rate adjustment - Sources send at their maximum rate - Coding to recover from packet loss 37

  32. Context Congestion control: - Rate adjustment to limit packet loss - Retransmission of lost packets No congestion control: - No rate adjustment - Sources send at their maximum rate - Coding to recover from packet loss Does this bring congestion collapse? 37

  33. Bandwidth Sharing Networks [Massoulié Roberts 00] 0 1 2 - A flow: a stream of packets - Flows are considered as a fluid - Users divided in classes/routes - Poisson arrivals/Exponential sizes - Resource allocation determined by congestion policy 38

  34. Bandwidth Sharing Networks [Massoulié Roberts 00] λ 0 μ 0 ϕ 0 λ 1 λ 2 μ 1 ϕ 1 μ 2 ϕ 2 - A flow: a stream of packets - Flows are considered as a fluid - Users divided in classes/routes - Poisson arrivals/Exponential sizes - Resource allocation determined by congestion policy 38

  35. Resource Allocation Usually, α -fair policies are considered [MW00] . Here: - Sources send at their maximum rate (1 or a ) - T ail dropping: At each link, output rates are proportional to input rates 39

  36. Resource Allocation Usually, α -fair policies are considered [MW00] . Here: - Sources send at their maximum rate (1 or a ) - T ail dropping: At each link, output rates are proportional to input rates x 0 x 1 x 2 39

  37. Resource Allocation Usually, α -fair policies are considered [MW00] . Here: - Sources send at their maximum rate (1 or a ) - T ail dropping: At each link, output rates are proportional to input rates x 0 α = x 0 + x 1 x 0 x 1 x 2 x 1 ϕ 1 = x 0 + x 1 39

  38. Resource Allocation Usually, α -fair policies are considered [MW00] . Here: - Sources send at their maximum rate (1 or a ) - T ail dropping: At each link, output rates are proportional to input rates x 0 α = x 0 + x 1 x 0 � � α ϕ 0 = min α, x 2 a + α x 1 x 2 � � x 2 a ϕ 2 = min x 2 a , x 1 ϕ 1 = α + x 2 a x 0 + x 1 39

  39. Ergodicity Condition 0 1 2 Optimal ergodicity condition: ρ 0 + ρ 1 < 1 , ρ 0 + ρ 2 < 1 where ρ i = λ i /μ i . We know α -fair policies are optimal [BM02] . 40

  40. Ergodicity Condition 0 1 2 Optimal ergodicity condition: ρ 0 + ρ 1 < 1 , ρ 0 + ρ 2 < 1 where ρ i = λ i /μ i . We know α -fair policies are optimal [BM02] . What about our policy? 40

  41. Fluid Limits x 0 α = x 0 + x 1 � � x 0 α ϕ 0 = min α, x 2 a + α x 1 x 2 � � x 2 a ϕ 2 = min x 2 a , x 1 ϕ 1 = α + x 2 a x 0 + x 1 If x 2 ≫ 0, class 2 uses virtually all the second link. If ( z 0 ( t ) , z 1 ( t ) , z 2 ( t )) is a fluid limit with z 2 ( 0 ) > 0,  ˙ z 0 ( t ) = λ 0 ,  z 1 ( t ) ˙ z 1 ( t ) = λ 1 − μ 1 z 0 ( t )+ z 1 ( t ) ,  ˙ z 2 ( t ) = λ 2 − μ 2 . 41

  42. Fluid Limits x 0 α = x 0 + x 1 � � x 0 α ϕ 0 = min α, x 2 a + α x 1 x 2 � � x 2 a ϕ 2 = min x 2 a , x 1 ϕ 1 = α + x 2 a x 0 + x 1 If x 2 ≫ 0, class 2 uses virtually all the second link. If ( z 0 ( t ) , z 1 ( t ) , z 2 ( t )) is a fluid limit with z 2 ( 0 ) > 0,  ˙ z 0 ( t ) = λ 0 ,  z 1 ( t ) ˙ z 1 ( t ) = λ 1 − μ 1 z 0 ( t )+ z 1 ( t ) ,  ˙ z 2 ( t ) = λ 2 − μ 2 . If ρ 2 < 1, ( z 2 ( t )) reaches 0 in finite time. 41

  43. Fluid Limits α x 0 � � α ϕ 0 = min α, x 2 a + α x 1 x 2 � � x 2 a ϕ 2 = min x 2 a , x 1 ϕ 1 = α + x 2 a x 0 + x 1 Classes 0 and 1 are frozen: π α 2 is the stationary distribution of class 2 α � � �� ¯ Φ 0 ( α ) = E π α Φ 0 α, . 2 x 2 a + α 42

  44. Fluid Limits When z 2 ( t ) = 0:  � � z 0 ( t ) = λ 0 − μ 0 ¯ ˙ z 0 ( t ) ϕ 0 ,  z 0 ( t ) + z 1 ( t )     z 1 ( t ) ˙ z 1 ( t ) = λ 1 − μ 1 ,   z 0 ( t ) + z 1 ( t )    ˙ = 0 . z 2 ( t ) with α � � �� ¯ Φ 0 ( α ) = E π α Φ 0 α, . 2 x 2 a + α 43

  45. Fluid Limits When z 2 ( t ) = 0:  � � z 0 ( t ) = λ 0 − μ 0 ¯ ˙ z 0 ( t ) ϕ 0 ,  z 0 ( t ) + z 1 ( t )     z 1 ( t ) ˙ z 1 ( t ) = λ 1 − μ 1 ,   z 0 ( t ) + z 1 ( t )    ˙ = 0 . z 2 ( t ) with α � � �� ¯ Φ 0 ( α ) = E π α Φ 0 α, . 2 x 2 a + α Stochastic averaging 43

  46. Ergodicity Conditions Ergodicity conditions: ρ 1 < 1 , ρ 2 < 1 , ρ 0 < ¯ ϕ 0 ( 1 − ρ 1 ) Optimal conditions: ρ 1 < 1 , ρ 2 < 1 , ρ 0 < min ( 1 − ρ 1 , 1 − ρ 2 ) 44

  47. Ergodicity Conditions Ergodicity conditions: ρ 1 < 1 , ρ 2 < 1 , ρ 0 < ¯ ϕ 0 ( 1 − ρ 1 ) Optimal conditions: ρ 1 < 1 , ρ 2 < 1 , ρ 0 < min ( 1 − ρ 1 , 1 − ρ 2 ) But: ¯ ϕ 0 ( 1 − ρ 1 ) < min ( 1 − ρ 2 , 1 − ρ 1 ) 44

  48. Ergodicity Conditions Ergodicity conditions: ρ 1 < 1 , ρ 2 < 1 , ρ 0 < ¯ ϕ 0 ( 1 − ρ 1 ) Optimal conditions: ρ 1 < 1 , ρ 2 < 1 , ρ 0 < min ( 1 − ρ 1 , 1 − ρ 2 ) But: ¯ ϕ 0 ( 1 − ρ 1 ) < min ( 1 − ρ 2 , 1 − ρ 1 ) Not optimal! 44

  49. Impact of Maximum Rate a Optimal a = 1 Class 0: ρ 0 a = 0 . 1 a = 0 . 01 Class 1: ρ 1 45

  50. Impact of Maximum Rate a Optimal a = 1 Class 0: ρ 0 a = 0 . 1 a = 0 . 01 Class 1: ρ 1 What happens when a → 0 ? 45

  51. Scaling the Maximum Rate a We freeze α and consider the process ( X S 2 ( t )) with Q -matrix: q ( x 2 , x 2 + 1 ) = λ 2 , � x 2 a � q ( x 2 , x 2 − 1 ) = μ 2 min x 2 a , α + x 2 a 46

  52. Scaling the Maximum Rate a We freeze α and consider the process ( X S 2 ( t )) with Q -matrix: q ( x 2 , x 2 + 1 ) = λ 2 , � a x 2 a / S � q ( x 2 , x 2 − 1 ) = μ 2 min x 2 , S α + x 2 a/S Time-scale: t �→ St 46

  53. Scaling the Maximum Rate a We freeze α and consider the process ( X S 2 ( t )) with Q -matrix: q ( x 2 , x 2 + 1 ) = λ 2 , � a x 2 a / S � q ( x 2 , x 2 − 1 ) = μ 2 min x 2 , S α + x 2 a/S Time-scale: t �→ St ( X S 2 ( St ) /S ) ⇒ ( x 2 ( t )) with � x 2 ( t ) a � ˙ x 2 ( t ) = λ 2 − μ 2 min ax 2 ( t ) , α + x 2 ( t ) a 46

  54. Scaling the Maximum Rate a We freeze α and consider the process ( X S 2 ( t )) with Q -matrix: q ( x 2 , x 2 + 1 ) = λ 2 , � a x 2 a / S � q ( x 2 , x 2 − 1 ) = μ 2 min x 2 , S α + x 2 a/S Time-scale: t �→ St ( X S 2 ( St ) /S ) ⇒ ( x 2 ( t )) with � x 2 ( t ) a � ˙ x 2 ( t ) = λ 2 − μ 2 min ax 2 ( t ) , α + x 2 ( t ) a Fixed point: � � ρ 2 α max 1 , x 2 = 1 − ρ 2 a 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend