balancing vectors in any norm
play

Balancing Vectors in Any Norm Aleksandar (Sasho) Nikolov University - PowerPoint PPT Presentation

Balancing Vectors in Any Norm Aleksandar (Sasho) Nikolov University of Toronto Based on joint work with Daniel Dadush, Kunal Talwar, and Nicole Tomczak-Jaegermann Sasho Nikolov (U of T) Balancing Vectors 1 / 25 Introduction Outline


  1. Balancing Vectors in Any Norm Aleksandar (Sasho) Nikolov University of Toronto Based on joint work with Daniel Dadush, Kunal Talwar, and Nicole Tomczak-Jaegermann Sasho Nikolov (U of T) Balancing Vectors 1 / 25

  2. Introduction Outline Introduction 1 Volume Lower Bound 2 Factorization Upper Bounds 3 Conclusion 4 Sasho Nikolov (U of T) Balancing Vectors 2 / 25

  3. Introduction Discrepancy − 1   1     1    1 1 1 0 0 0 0 0 0   1    − 1   1 1 0 1 1 0 0 0 0 0       1 =       0 0 0 1 0 0 1 0 0 0       − 1   0 0 0 1 1 1 1 1 1 − 1   1     1   − 1 disc( U , � · � ∞ ) = ε ∈{± 1 } N � U ε � ∞ min Sasho Nikolov (U of T) Balancing Vectors 3 / 25

  4. Introduction Discrepancy − 1   1     1    1 1 1 0 0 0 0 0 0   1    − 1   1 1 0 1 1 0 0 0 0 0       1 =       0 0 0 1 0 0 1 0 0 0       − 1   0 0 0 1 1 1 1 1 1 − 1   1     1   − 1 disc( U , � · � ∞ ) = ε ∈{± 1 } N � U ε � ∞ min Natural to consider arbitrary norms: any norm can be written as � U · � ∞ . Sasho Nikolov (U of T) Balancing Vectors 3 / 25

  5. Introduction Basic Bounds [Spencer, 1985; Gluskin, 1989]: For any matrix U ∈ { 0 , 1 } n × N , disc( U ) � √ n Sasho Nikolov (U of T) Balancing Vectors 4 / 25

  6. Introduction Basic Bounds [Spencer, 1985; Gluskin, 1989]: For any matrix U ∈ { 0 , 1 } n × N , disc( U ) � √ n Implied by : For any u 1 , . . . , u N ∈ B n ∞ = [ − 1 , 1] n , there exist ε 1 , . . . , ε N ∈ {− 1 , +1 } s.t. � ε 1 u 1 + . . . + ε N u N � ∞ � √ n . Sasho Nikolov (U of T) Balancing Vectors 4 / 25

  7. Introduction Basic Bounds [Spencer, 1985; Gluskin, 1989]: For any matrix U ∈ { 0 , 1 } n × N , disc( U ) � √ n Implied by : For any u 1 , . . . , u N ∈ B n ∞ = [ − 1 , 1] n , there exist ε 1 , . . . , ε N ∈ {− 1 , +1 } s.t. � ε 1 u 1 + . . . + ε N u N � ∞ � √ n . [Beck and Fiala, 1981]: For any matrix U ∈ { 0 , 1 } n × N with at most t ones per column, disc( U ) ≤ 2 t − 1 Sasho Nikolov (U of T) Balancing Vectors 4 / 25

  8. Introduction Basic Bounds [Spencer, 1985; Gluskin, 1989]: For any matrix U ∈ { 0 , 1 } n × N , disc( U ) � √ n Implied by : For any u 1 , . . . , u N ∈ B n ∞ = [ − 1 , 1] n , there exist ε 1 , . . . , ε N ∈ {− 1 , +1 } s.t. � ε 1 u 1 + . . . + ε N u N � ∞ � √ n . [Beck and Fiala, 1981]: For any matrix U ∈ { 0 , 1 } n × N with at most t ones per column, disc( U ) ≤ 2 t − 1 Implied by : For any u 1 , . . . , u N ∈ B n 1 , there exist ε 1 , . . . , ε N ∈ {− 1 , +1 } s.t. � ε 1 u 1 + . . . + ε N u N � ∞ < 2. Sasho Nikolov (U of T) Balancing Vectors 4 / 25

  9. Introduction Basic Bounds [Spencer, 1985; Gluskin, 1989]: For any matrix U ∈ { 0 , 1 } n × N , disc( U ) � √ n Implied by : For any u 1 , . . . , u N ∈ B n ∞ = [ − 1 , 1] n , there exist ε 1 , . . . , ε N ∈ {− 1 , +1 } s.t. � ε 1 u 1 + . . . + ε N u N � ∞ � √ n . [Beck and Fiala, 1981]: For any matrix U ∈ { 0 , 1 } n × N with at most t ones per column, disc( U ) ≤ 2 t − 1 Implied by : For any u 1 , . . . , u N ∈ B n 1 , there exist ε 1 , . . . , ε N ∈ {− 1 , +1 } s.t. � ε 1 u 1 + . . . + ε N u N � ∞ < 2. Most combinatorial discrepancy bounds are implied by geometric vector balancing arguments. Sasho Nikolov (U of T) Balancing Vectors 4 / 25

  10. Introduction The Vector Balancing Problem Given u 1 , . . . , u N ∈ R n , and symmetric convex body K ⊂ R n ( K = − K ), find the smallest t such that ∃ ε 1 , . . . , ε N ∈ {− 1 , +1 } : ε 1 u 1 + . . . + ε N u N ∈ tK − u 1 + u 2 u 1 + u 2 u 1 − u 2 − u 1 − u 2 Sasho Nikolov (U of T) Balancing Vectors 5 / 25

  11. Introduction The Vector Balancing Problem Given u 1 , . . . , u N ∈ R n , and symmetric convex body K ⊂ R n ( K = − K ), find the smallest t such that ∃ ε 1 , . . . , ε N ∈ {− 1 , +1 } : ε 1 u 1 + . . . + ε N u N ∈ tK − u 1 + u 2 u 1 + u 2 u 1 − u 2 − u 1 − u 2 Minkowski Norm : � x � K = inf { t : x ∈ tK } ; t = disc(( u i ) N i =1 , � · � K ). Sasho Nikolov (U of T) Balancing Vectors 5 / 25

  12. Introduction The Vector Balancing Problem Given u 1 , . . . , u N ∈ R n , and symmetric convex body K ⊂ R n ( K = − K ), find the smallest t such that ∃ ε 1 , . . . , ε N ∈ {− 1 , +1 } : ε 1 u 1 + . . . + ε N u N ∈ tK − u 1 + u 2 u 1 + u 2 u 1 − u 2 − u 1 − u 2 Minkowski Norm : � x � K = inf { t : x ∈ tK } ; t = disc(( u i ) N i =1 , � · � K ). Vector Balancing Constant : worst case over sequences in C � � disc( U , � · � K ) : N ∈ N , u 1 , . . . , u N ∈ C , U = ( u i ) N vb( C , K ) = sup i =1 Sasho Nikolov (U of T) Balancing Vectors 5 / 25

  13. Introduction Questions and Prior Results [Dvoretzky, 1963] “What can be said” about vb( K , K )? any and Grinberg, 1981] vb( K , K ) ≤ n for all K . [B´ ar´ Sasho Nikolov (U of T) Balancing Vectors 6 / 25

  14. Introduction Questions and Prior Results [Dvoretzky, 1963] “What can be said” about vb( K , K )? any and Grinberg, 1981] vb( K , K ) ≤ n for all K . [B´ ar´ ∞ ) � √ n [Spencer, 1985; Gluskin, 1989] vb( B n ∞ , B n [Beck and Fiala, 1981] vb( B n 1 , B n ∞ ) < 2 Sasho Nikolov (U of T) Balancing Vectors 6 / 25

  15. Introduction Questions and Prior Results [Dvoretzky, 1963] “What can be said” about vb( K , K )? any and Grinberg, 1981] vb( K , K ) ≤ n for all K . [B´ ar´ ∞ ) � √ n [Spencer, 1985; Gluskin, 1989] vb( B n ∞ , B n [Beck and Fiala, 1981] vb( B n 1 , B n ∞ ) < 2 [Banaszczyk, 1998] vb ( B n 2 , K ) ≤ 5 if K has Gaussian measure γ n ( K ) ≥ 1 2 os Problem : Prove or disprove vb( B n 2 , B n Koml´ ∞ ) � 1. ∞ ) � √ log 2 n . Banaszczyk’s theorem implies vb( B n 2 , B n Sasho Nikolov (U of T) Balancing Vectors 6 / 25

  16. Introduction Vector Balancing and Rounding For any w ∈ [0 , 1] N , any U = ( u i ) N i =1 , u i ∈ C , and any symmetric convex K , there exists a x ∈ { 0 , 1 } N such that � Ux − Uw � K ≤ vb( C , K ) . Sasho Nikolov (U of T) Balancing Vectors 7 / 25

  17. Introduction Our Results We initiate a systematic study of upper and lower bounds on vb( C , K ) and its computational complexity: Sasho Nikolov (U of T) Balancing Vectors 8 / 25

  18. Introduction Our Results We initiate a systematic study of upper and lower bounds on vb( C , K ) and its computational complexity: A natural volumetric lower bound on vb( C , K ) is tight up to a O (log n ) factor. The proof implies an efficient algorithm to compute ε ∈ {− 1 , 1 } N given u 1 , . . . , u N ∈ C , so that � ε 1 u 1 + . . . + ε N u N � K � (1 + log n ) vb( C , K ). Also rounding version. Sasho Nikolov (U of T) Balancing Vectors 8 / 25

  19. Introduction Our Results We initiate a systematic study of upper and lower bounds on vb( C , K ) and its computational complexity: A natural volumetric lower bound on vb( C , K ) is tight up to a O (log n ) factor. The proof implies an efficient algorithm to compute ε ∈ {− 1 , 1 } N given u 1 , . . . , u N ∈ C , so that � ε 1 u 1 + . . . + ε N u N � K � (1 + log n ) vb( C , K ). Also rounding version. An efficiently computable upper bound on vb( C , K ) is tight up to factors polynomial in log n . Based on an optimal application of Banaszczyks’ theorem. Implies an efficient approximation algorithm for vb( C , K ). Sasho Nikolov (U of T) Balancing Vectors 8 / 25

  20. Introduction Our Results We initiate a systematic study of upper and lower bounds on vb( C , K ) and its computational complexity: A natural volumetric lower bound on vb( C , K ) is tight up to a O (log n ) factor. The proof implies an efficient algorithm to compute ε ∈ {− 1 , 1 } N given u 1 , . . . , u N ∈ C , so that � ε 1 u 1 + . . . + ε N u N � K � (1 + log n ) vb( C , K ). Also rounding version. An efficiently computable upper bound on vb( C , K ) is tight up to factors polynomial in log n . Based on an optimal application of Banaszczyks’ theorem. Implies an efficient approximation algorithm for vb( C , K ). The results extend to hereditary discrepancy with respect to arbitrary norms. Sasho Nikolov (U of T) Balancing Vectors 8 / 25

  21. Introduction Our Results We initiate a systematic study of upper and lower bounds on vb( C , K ) and its computational complexity: A natural volumetric lower bound on vb( C , K ) is tight up to a O (log n ) factor. The proof implies an efficient algorithm to compute ε ∈ {− 1 , 1 } N given u 1 , . . . , u N ∈ C , so that � ε 1 u 1 + . . . + ε N u N � K � (1 + log n ) vb( C , K ). Also rounding version. An efficiently computable upper bound on vb( C , K ) is tight up to factors polynomial in log n . Based on an optimal application of Banaszczyks’ theorem. Implies an efficient approximation algorithm for vb( C , K ). The results extend to hereditary discrepancy with respect to arbitrary norms. Prior work [Bansal, 2010; Nikolov and Talwar, 2015] implies bounds which deteriorate with the number of facets of K . Sasho Nikolov (U of T) Balancing Vectors 8 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend