b v
play

B V P h r P u I ( D P k y P P i c I t Z w a - PDF document

e t e t i m m o C g ) P i n P r P e I t e m s P a B V P h r P u I ( D P k y P P i c I t Z w a n s a m i c s R o h y P r u o v l a F B-physics CKM-matrix generalities


  1. e t e t i m m o C g ) P i n P r P e I t e m s P a B → V γ P h r P u I ( D ✧ P ✧ k y P P i c I t Z w a n s a m i c s R o h y P r u o v l a F

  2. • B-physics CKM-matrix generalities • Exclusive decays H e ff • Hadronic matrix elements – Distribution Amplitudes • Overview of our activities • Focus B → V γ beyond QCD factorization • Particular focus on time dep. CP-asymmetry

  3. V us s u    δ 3  δ V ud V us V ub 1 δ 2 V cd V cs V cb δ 1 hierarchy : δ ∼ 0 . 2  ∼    H ∆ S =1 W δ 3 δ 2 V td V ts V tb 1 absolute values • V arbitrary unitary matrix 9 parameters (5=6-1 absorbed in phases of quarks) ⇒ 4 parameters ∼ 3 rotation & 1 complex pahse • ( CP ) L weak ( CP ) † = L weak ⇔ V αβ = V ∗ αβ CP-violation • unitarity V V † = 1, 9 conditions among B 0 d triangle V du V ∗ ub + V dc V ∗ cb + V dt V ∗ tb = 0 s and K 0 triangles too flat) known as the CKM-triangle ( B 0 • CP violation ↔ non-zero area triangle • only established source of CP-viol SM (MNS neutrinos ?)

  4. Results: 1. CKM mechanism works • triangle overconstrained • describes CP-viol. mesons quant. 2. Not enough Baryogenesis ( ∼ 10 10 ) → T.Underwood’s talk From Sides (CP-cons.) From Angles (CP-viol.)

  5. Relate observables to fund. parameters (Hadronization) Γ ( B → π e ν ) , ∆ M s m b , V ub , V ts ↔ A few simple examples • A CP ( B → J/ Ψ K s ) ∼ sin(2 β ) sin( ∆ Mt ) Bigi & Sanda 81 • | V ub | − 2 ∼ dq 2 | f + ( q 2 ) | 2 � one single form factor !

  6. B → X Y ↔ � XY | H e ff | B � remark type H e ff (¯ B → π e ν bu ) V − tree − level semileptonic A (¯ ¯ b σ · Fs ) V + A + . . . FCNC semileptonic B → K ∗ γ (¯ A ( ¯ bu ) V − du ) V − tree − level non − leptonic B → ππ A � M W Λ QCD Λ m b m b new Exploit hierarchy Physics ? of scales 5 80GeV 1 0 . 2 • M W to m b described pert. QCD ⇒ concretely apply Wilsonian picture � H e ff = C i ( µ ) O i ( µ ) � �� � � �� � UV IR Q i operators (above), µ ∼ m b factorisation scale . . . steps: 1. matching scale M W (initial condition) 2. RNG-running scale C i ∼ L γ i . . . γ i anomal. dim → calc. 3. evaluate � XY | Q i ( µ ) B � d f ” i i ” t o a o e e s e m n x p r

  7. • Parametrize matrix element grounds Lorentz-covariane 0 < q 2 < ( m B − m π ) 2 � π ( p ) | ¯ b γ µ (1 − γ 5 ) q | B � = 2 p µ f + ( q 2 ) Heavy-light (no sym. light-light or heavy-heavy) ⇒ non-pert object Methods : 1. Light-Cone Sum Rules small q 2 ↔ E π large, pion LC 2. Lattice-QCD large q 2 ↔ E π small, pion o/w not resolved by lattice are complementary • LCSR are QCD sum-rules OPE ↔ LC − OPE Cond : � ¯ qq � ↔ DistributionAmplitudes : φ π ( u ) • Leading part the form factor in LCSR f B → π ∼ f π (1 + O (1) a 2 ( π ) . . . ) + . . . + a 2 moment DA

  8. • relevant exclusive processes at large momentum transfer (LC) • most important DA ↔ minimal number of partons � e iupx φ π ( u ) + O ( x 2 , m 2 � π ( p ) | ¯ q ( x ) γ µ γ 5 q (0) | 0 � = if π p µ π ) – called twist-2, twist = dim - spin = 3 -1 correction: higher Fock states, dev. from LC – variable u : col. momentum fraction of corr. quark in meson • QCD e.o.m. di ff erent DA related � 1 q ( x ) x α gG α µ ( vx ) γ µ s ( − x ) − ( m s + m q )¯ ∂ µ ¯ q ( x ) γ µ s ( − x ) = − i dv v ¯ q ( x ) i ( γ 5 ) s ( − x ) − 1 Wilson lines omitted, take matrix elements • what to do φ π ( u ) ?

  9. A. models obeying theor. & exp. constraints B. expand in Eigenfunction of evolution kernel � a n ( µ, π ) C 3 / 2 φ π ( u, µ ) = 6 u (1 − u )(1 + (2 u − 1)) n n ≥ 1 – a n Gegenbauer moments – C n Gegenbauer pol. rep. collinear SL (2 , R ) ∈ S 0(4 , 2) conformal – asymptotic part 6 u (1 − u ) exact from perturbative QCD • Why good expansion ? � 1. convolution smooth kernel duT ( u ) C n ( u ) decreasing ( C n n nodes) 2. det. of a n indicate a 0 ≡ 1 > | a 1 | > | a 2 | . . . ”consistent” with γ n +1 > γ n conformal hierarchy • Determination ? a. fit to experiment .. (contam. other hadr. uncert.) b. calculate from local matrix element (Fourier inversion) ∗ QCD sum rules ∗ lattice QCD (new e ff orts)

  10. 1. calculation of all weak and penguin form factors B → ( P, V ) from LCSR PRD 71, 14015 and PRD 71, 14029 2005 Ball RZ | V ub | HFAG = 3 . 38 ± 0 . 12 +0 . 56 − 0 . 37 10 − 3 BZ Open parenthesis (NP ?) | V ub | CKM − fit = 3 . 5 ± 0 . 18 10 − 3 | V ub | DGE = 4 . 46 ± 0 . 2 ± 0 . 2 10 − 3 incl 2. Kaon DA K, K ∗ , � , K ∗ , ⊥ emph. SU(3)-break. PLB 633,289 2006, JHEP 0602:034 2006 Ball RZ a � 1 ( K ∗ ) = 0 . 03 ± 0 . 02 , a ⊥ 1 ( K ∗ ) = 0 . 04 ± 0 . 03 . a 1 ( K ) = 0 . 06 ± 0 . 03 , Later QCDSF/HPQCD & QCDSF same values advert. smaller uncert. 3. apply these results B → V γ JHEP 0604:046,2006, PLB B642:478 RZ Ball all new hep-ph/0612081 Ball Jones RZ topic rest

  11. B → V γ beyond QCD Factorisation • whole zoo: B → ( ρ (0 , +) , ω , K ∗ , (0 , +) ) and B s → ( ¯ K ∗ , φ ) • FCNC new physics hidden loops ? • B ( b → X s γ ) incl no hints NP • history 1993 B → K ∗ γ CLEO 2005 B → ργ Belle (BaBar 2006) 200x B s → ( ¯ K ∗ , φ ) γ LHCb

  12.   = G F � � H ( d,s ) λ ( d,s )  + BSM  C 1 Q 1 + C 2 Q 2 + C i Q i √ e ff U 2 � �� � U = u,c i =3 ,..., 8 CKM E ff ective Hamiltonian (OPE-description), CKM-factors λ s t = V bt V ∗ ts U = (¯ s i U j ) V − A ( ¯ sU ) V − A ( ¯ U =(¯ Q 1 U j b i ) V − A Q 2 Ub ) V − A � � Q 3 =(¯ sb ) V − A (¯ qq ) V − A Q 4 = (¯ s i b j ) V − A (¯ q j q i ) V − A q q � � Q 5 =(¯ sb ) V − A (¯ qq ) V + A Q 6 = (¯ s i b j ) V − A (¯ q j q i ) V + A q q Q 7 = e g s i σ µ ν (1 + γ 5 ) b i F µ ν s i σ µ ν (1 + γ 5 ) T a ij b j G a 8 π 2 m b ¯ Q 8 = 8 π 2 m b ¯ µ ν • C i Wilson Coe ff . NLO α s (NNLO first estimate) from “inclusive people” • C 7 leading 1 /m b and α s b → ( d, s ) γ , add O ( m s )-part later • C 2 1 /m b (power)-correction in b → ( d, s ) γ , but C 2 ∼ C 7 • Q 2 U -flavour sensitive, discr. final state

  13. • At O ( α 0 s ), LO 1 /m b only electric penguin � V γ | ¯ b σ · F (1+ γ 5 ) q | B � = kin.T 1 (0) FF from LCSR � �� � Q 7 • At O ( α s ), LO 1 /mb QCD factorization ( Bosch et al, Beneke et al, Ali et al 01): � 1 T I d ξ du φ B ( ξ ) φ V ⊥ ( u ) T II � V γ | Q i | B � = i F ( B → V ⊥ ) + i ( ξ , u ) + O ( Λ /m b ) 0 = # � V γ | Q 7 | B � + O ( Λ /m b ) Ex. hard-spectator, T II Ex. hard-vertex, T I

  14. power supressed non-factorizable contribution c, u Q 2 Q 6 annihilation (drives isospin break.) c, u -loops (Time-dep CP asymmetry) • B ( B → V γ ) ∼ 20(30)% • Isospin asymmetries – ( ρ 0 , ρ + ) depend angle γ – ( K ∗ 0 , K ∗ + ) .. interesting 2 � � • R ≡ B ( B → ( ρ , ω ) γ ) � V td red. uncert. � � B ( B → K ∗ γ ) ∼ V ts � extract | V td /V ts | BJZ r = C 6 /C SM BaBar = 0 . 199(22)(14) 6 compare | V td /V ts | ∆ M s CDF = 0 . 206(8)

  15. B 0 decay ( V − A )-int.produce predominantly left handed photons • Key idea ¯ Beyond SM anything possible .. enhanced m NP /m b • A CP = Γ ( ¯ B 0 ( t ) → ¯ K ∗ 0 γ ) − Γ ( B 0 ( t ) → K ∗ 0 γ ) K ∗ 0 γ ) + Γ ( B 0 ( t ) → K ∗ 0 γ ) = S sin( ∆ m B t ) − C cos( ∆ m B t ) , Γ ( ¯ B 0 ( t ) → ¯ • Gronau,Attwood & Soni 97 since LO operator e 7 + m s s σ µ ν (1 − γ 5 ) b ] F µ ν ≡ Q L Q R Q 7 = 8 π 2 [ m b ¯ s σ µ ν (1 + γ 5 ) b + m s ¯ 7 m b Time dependent CP asymmetry ( ∼ L · R/L 2 = − sin(2 β ) m s S SM ,s R (2 + O ( α s )) ∼ (2 − 3)% K ∗ γ m b – O ( α s )-correction calculable QCD-F – B ∼ ( L 2 + R 2 ) /L 2 right-handed ”not sizable” O ( m 2 s /m 2 b )

  16. • Grinstein et al 04 futher contribution from soft gluon emission, c-loop from Q c 2 (QCD V-interaction) non-factorizable Q 2 Q 2 • SCET based analysis resorts to dimensional estimate of matrix element and obtain � � C 2 Λ QCD | S SM , soft gluons � � | = 2 sin(2 β ) ≈ 0 . 06 . � � K ∗ γ 3 C 7 m b � � reach conclusion: S SM K ∗ γ ∼ 10% with large uncertainties

  17. • idea: on-shell photon, c-quark heavy perform a local OPE � d 4 xe iqx T { [¯ ie ∗ µ c ( x ) γ µ c ( x )] Q c Q F = 2 (0) } λ a 1 s γ ρ (1 − γ 5 ) g � ( D ρ F αβ )[¯ G a = − 2 b ] + . . . αβ 48 π 2 m 2 c • Remains calculate matrix element � K ∗ ( p, η ) γ ( q, e ) | Q F | B � = L kin 1 +˜ L kin 2 • use LCSR (generous uncertainty, 3-particle DA, 1 /m c -corrections) � � L − ˜ − C 2 L S SM , soft gluons = − 2 sin(2 β ) = 0 . 5 ± 1% K ∗ γ c T B → K ∗ C 7 36 m b m 2 (0) 1 ⇒ S SM = − 2 . 2 ± 1 . 2 +0 − 1 α s % (232 · 10 6 B ¯ S BaBar = − 21 ± 40 (stat) ± 5 (syst)% BaBar B pairs), (535 · 10 6 B ¯ = − 32 +36 S Belle − 33 (stat) ± 5 (syst)% Belle B pairs), and S HFAG = − 28 ± 26% waiting for BaBar update !

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend