automatic numerical integration and extrapolation for
play

Automatic numerical integration and extrapolation for Feynman loop - PowerPoint PPT Presentation

Outline Automatic numerical integration and extrapolation for Feynman loop integrals E. de Doncker 1 , F . Yuasa 2 , K. Kato 3 , T. Ishikawa 2 1 Dept. of Computer Science, W. Michigan Univ., Kalamazoo MI 49008, U.S.A. 2 High Energy Accelerator


  1. Outline Automatic numerical integration and extrapolation for Feynman loop integrals E. de Doncker 1 , F . Yuasa 2 , K. Kato 3 , T. Ishikawa 2 1 Dept. of Computer Science, W. Michigan Univ., Kalamazoo MI 49008, U.S.A. 2 High Energy Accelerator Research Organization (KEK), Tsukuba, Japan 3 Department of Physics, Kogakuin University, Shinjuku, Tokyo, Japan beamer-tu-logo Oct. 9, 2016 beamer-ur-logo de Doncker, Yuasa, Kato, Ishikawa

  2. Outline Outline Loop integral - representation 1 Extrapolation/convergence acceleration methods 2 Automatic integration/ParInt 3 Automatic Integration P AR I NT Parallel multivariate integration Numerical results 4 2-loop self-energy/Magdeburg 2-loop vertex, box - P AR I NT performance 3-loop self-energy beamer-tu-logo 3-loop vertex 4-loop self-energy beamer-ur-logo Conclusions 5 de Doncker, Yuasa, Kato, Ishikawa

  3. Outline Outline Loop integral - representation 1 Extrapolation/convergence acceleration methods 2 Automatic integration/ParInt 3 Automatic Integration P AR I NT Parallel multivariate integration Numerical results 4 2-loop self-energy/Magdeburg 2-loop vertex, box - P AR I NT performance 3-loop self-energy beamer-tu-logo 3-loop vertex 4-loop self-energy beamer-ur-logo Conclusions 5 de Doncker, Yuasa, Kato, Ishikawa

  4. Outline Outline Loop integral - representation 1 Extrapolation/convergence acceleration methods 2 Automatic integration/ParInt 3 Automatic Integration P AR I NT Parallel multivariate integration Numerical results 4 2-loop self-energy/Magdeburg 2-loop vertex, box - P AR I NT performance 3-loop self-energy beamer-tu-logo 3-loop vertex 4-loop self-energy beamer-ur-logo Conclusions 5 de Doncker, Yuasa, Kato, Ishikawa

  5. Outline Outline Loop integral - representation 1 Extrapolation/convergence acceleration methods 2 Automatic integration/ParInt 3 Automatic Integration P AR I NT Parallel multivariate integration Numerical results 4 2-loop self-energy/Magdeburg 2-loop vertex, box - P AR I NT performance 3-loop self-energy beamer-tu-logo 3-loop vertex 4-loop self-energy beamer-ur-logo Conclusions 5 de Doncker, Yuasa, Kato, Ishikawa

  6. Outline Outline Loop integral - representation 1 Extrapolation/convergence acceleration methods 2 Automatic integration/ParInt 3 Automatic Integration P AR I NT Parallel multivariate integration Numerical results 4 2-loop self-energy/Magdeburg 2-loop vertex, box - P AR I NT performance 3-loop self-energy beamer-tu-logo 3-loop vertex 4-loop self-energy beamer-ur-logo Conclusions 5 de Doncker, Yuasa, Kato, Ishikawa

  7. Loop integral - representation Extrapolation/convergence acceleration methods Automatic integration/ParInt Numerical results Conclusions Loop integral - representation L -loop integral with N internal lines Z 1 N � N − nL � C N − n ( L + 1 ) / 2 I = Γ Y X ( 4 ⇡ ) nL / 2 ( − 1 ) N 2 dx r � ( 1 − x r ) (1) ( D − i % C ) N − nL / 2 0 r = 1 C and D are polynomials determined by the topology of the corresponding diagram and physical parameters n = n ( " ) to account for IR or UV singularity (where " = dimensional beamer-tu-logo regularization parameter); let n ( " ) = 4 − 2 " for UV singularity beamer-ur-logo de Doncker, Yuasa, Kato, Ishikawa

  8. Loop integral - representation Extrapolation/convergence acceleration methods Automatic integration/ParInt Numerical results Conclusions Loop integral - representation Z 1 Z 1 − x 1 Z 1 − x 1 ... − x N − 2 C N − n ( L + 1 ) / 2 I N , L = Γ ( N − nL 2 )( − 1 ) N dx 1 dx 2 . . . ( D − i % C ) N − nL / 2 0 0 0 C N − n ( L + 1 ) / 2 = Γ ( N − nL Z 2 )( − 1 ) N ( D − i % C ) N − nL / 2 d x S N − 1 where S d = { x ∈ R d | 0 ≤ P d r = 1 x r ≤ 1 } : d -dimensional unit simplex beamer-tu-logo beamer-ur-logo de Doncker, Yuasa, Kato, Ishikawa

  9. Loop integral - representation Extrapolation/convergence acceleration methods Automatic integration/ParInt Numerical results Conclusions Napkin integral N = 3 , L = 1 , C = 1 , D = − x 1 x 2 s + ( x 1 + x 2 ) 2 m 2 + ( 1 − x 1 − x 2 ) M 2 Example for m = 40 , M = 93 , s = 9000 Z 1 Z 1 − x 1 1 I 3 , 1 ( ⇢ ) = − dx 1 dx 2 D − i % 0 0 Z 1 Z 1 − x 1 D I + C 1 % + C 2 % 2 + . . . + C ⌫ % ⌫ Re I 3 , 1 ( ⇢ ) = − dx 1 dx 2 D 2 + % 2 ≈ 0 0 Linear extrapolation as % → 0 : Let % = % ` = 2 7 − ` , , ` = 0 , 1 , . . . [3] Approximate Q ( ⇢ ` ) ≈ I 3 , 1 ( ⇢ ` ) and solve ( ⌫ + 1 ) × ( ⌫ + 1 ) linear systems, beamer-tu-logo ⌫ = 1 , 2 , . . . Q ( ⇢ ` ) = P ⌫ k , k = 0 C k % ` ` = 0 , . . . , ⌫ beamer-ur-logo de Doncker, Yuasa, Kato, Ishikawa

  10. Loop integral - representation Extrapolation/convergence acceleration methods Automatic integration/ParInt Numerical results Conclusions Extrapolation/convergence acceleration methods (i) If denominator vanishes in interior of the integration domain: integral calculated in the limit as % → 0 (ii) Integral with infrared (IR) singularity ( n = 4 + 2 " in (1)): calculated in the limit as " → 0 [6] (iii) Integral with ultraviolet (UV) singularity ( n = 4 − 2 " ): calculated in the limit as " → 0 beamer-tu-logo beamer-ur-logo de Doncker, Yuasa, Kato, Ishikawa

  11. Loop integral - representation Extrapolation/convergence acceleration methods Automatic integration/ParInt Numerical results Conclusions Asymptotics/Mechanics of extrapolation Numerical extrapolation (is tailored to an underlying asymptotic expansion): Linear extrapolation for S ( " ) ∼ C K ' K ( " ) + C K + 1 ' K + 1 ( " ) + C K + 2 ' K + 2 ( " ) + . . . , as " → 0 . assuming the ' k functions are known, for example, ' k ( " ) = " k . Create sequences of S ( " ` ) such that S ( " ` ) = C K ' K ( " ` ) + C K + 1 ' K + 1 ( " ` ) + . . . C K + ⌫ ' K + ⌫ ( " ` ) , ` = 0 , . . . , ⌫ . Solve linear systems of orders ( ⌫ + 1 ) × ( ⌫ + 1 ) , for increasing values of ⌫ . and decreasing " = " ` (e.g., geometric sequence " ` = b − ` , b > 1 ) . beamer-tu-logo Bulirsch [2] type sequences can be used for a sequence of the form " ` = 1 / b ` , b ` = 2 , 3 , 4 , 6 , 8 , 12 , 16 , 24 , . . . . Non-linear extrapolation with the ✏ -algorithm [11, 13, 12] can be applied beamer-ur-logo under more general conditions with geometric sequences of " ` [3]. de Doncker, Yuasa, Kato, Ishikawa

  12. Loop integral - representation Extrapolation/convergence acceleration methods Automatic integration/ParInt Numerical results Conclusions Automatic integration Black box approach Obtain an approximation Qf to an integral Z If = f ( ~ x ) d ~ x D and error estimate E f , in order to satisfy a specified accuracy requirement for the actual error, of the form: | Qf − If | ≤ E f ≤ max { t a , t r | If | } beamer-tu-logo for given integrand function f , region D and (absolute/relative) error tolerances t a and t r . beamer-ur-logo de Doncker, Yuasa, Kato, Ishikawa

  13. Loop integral - representation Extrapolation/convergence acceleration methods Automatic integration/ParInt Numerical results Conclusions P AR I NT package P AR I NT (P AR allel/distributed I NT egration), over MPI (Message Passing Interface), includes: Multivariate adaptive code: low dimensions (say, ≤ 12 ), deals with non-severe integrand problems Quasi-Monte Carlo (QMC): sequence of Korobov/Richtmyer rules (non-adaptive); randomized copies of each rule are applied for error estimate computation, high dimensions okay, smooth integrand behavior Monte Carlo (MC): based on (choice of) SPRNG or Random123 Pseudo-Random Number Generators (PRNG), high dimensions, erratic beamer-tu-logo integrand and/or domain (1D) adaptive quadrature methods from QuadPack [10], can be used in iterated (repeated) integration beamer-ur-logo de Doncker, Yuasa, Kato, Ishikawa

  14. Loop integral - representation Extrapolation/convergence acceleration methods Automatic integration/ParInt Numerical results Conclusions Parallel multivariate integration On the rule or points level: in non-adaptive algorithms, e.g., Monte-Carlo (MC) algorithms and composite rules using grid or lattice R D f ≈ P k w k f ( ~ x k ) : computation of the f ( ~ points, If = x k ) evaluation points in parallel On the region level: in adaptive (region-partitioning) methods, task pool algorithms, load balancing (distributed memory systems); or maintaining shared priority queue (in shared memorory systems) In iterated integration: On the rule level: inner integrals are independent and computed in parallel, e.g., over subregion S = D 1 × D 2 beamer-tu-logo R S F ( ~ k w k F ( ~ (inner region D 2 ) x ) dx ≈ P x k ) , with F ( ~ R D 2 f ( ~ x k , ~ y ) d ~ x k ) = y beamer-ur-logo Inner integrations can be performed adaptively. de Doncker, Yuasa, Kato, Ishikawa

  15. Loop integral - representation Extrapolation/convergence acceleration methods Automatic integration/ParInt Numerical results Conclusions Adaptive partitioning beamer-tu-logo Figure : Adaptive partitioning of the domain (singularity along axes) [9] beamer-ur-logo de Doncker, Yuasa, Kato, Ishikawa

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend