approximation strategies for incomplete maxsat
play

Approximation Strategies for Incomplete MaxSAT Saurabh Joshi 1 - PowerPoint PPT Presentation

Approximation Strategies for Incomplete MaxSAT Saurabh Joshi 1 Prateek Kumar 1 Ruben Martins 2 Sukrut Rao 1 1 IIT Hyderabad 2 Carnegie Mellon University SAT+SMT School 2019, IIT Bombay 8th December 2019


  1. Approximation Strategies for Incomplete MaxSAT Saurabh Joshi 1 Prateek Kumar 1 Ruben Martins 2 Sukrut Rao 1 1 IIT Hyderabad 2 Carnegie Mellon University SAT+SMT School 2019, IIT Bombay 8th December 2019 भारतीय ूौ�ो�गक� संःथान हैदराबाद Indian Institute of Technology Hyderabad . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . .. . . . . .

  2. w i r i . r i . . . . MaxSAT w Unsat w w w x x r k . x x r Cardinality Constraint x x r k x x r PB Constraint Minimize k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Weighted MaxSAT) . . . . . ( x 1 ∨ x 2 ) ∧ ( ¬ x 1 ∨ x 2 ) ∧ ( x 1 ∨ ¬ x 2 ) ∧ ( ¬ x 1 ∨ ¬ x 2 )

  3. w i r i . r i . . . . MaxSAT w Unsat w w w x x r k . x x r Cardinality Constraint x x r k x x r PB Constraint Minimize k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Weighted MaxSAT) . . . . . ( x 1 ∨ x 2 ) ∧ ( ¬ x 1 ∨ x 2 ) ∧ ( x 1 ∨ ¬ x 2 ) ∧ ( ¬ x 1 ∨ ¬ x 2 )

  4. w i r i . MaxSAT . . . . . . . . . . w . Unsat w w w r i k Cardinality Constraint k PB Constraint Minimize k . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Weighted MaxSAT) ( x 1 ∨ x 2 ) ∧ ( ¬ x 1 ∨ x 2 ) ∧ ( x 1 ∨ ¬ x 2 ) ∧ ( ¬ x 1 ∨ ¬ x 2 ) ( x 1 ∨ x 2 ∨ r 1 ) ∧ ( ¬ x 1 ∨ x 2 ∨ r 2 ) ∧ ( x 1 ∨ ¬ x 2 ∨ r 3 ) ∧ ( ¬ x 1 ∨ ¬ x 2 ∨ r 4 )

  5. w i r i . . . . . . . . . . . MaxSAT . . w Unsat w w w Cardinality Constraint k PB Constraint Minimize k (MaxSAT) . . . . . . . . . . . . . . . . . . . . . . . (Weighted MaxSAT) . . . . ( x 1 ∨ x 2 ) ∧ ( ¬ x 1 ∨ x 2 ) ∧ ( x 1 ∨ ¬ x 2 ) ∧ ( ¬ x 1 ∨ ¬ x 2 ) ( ∑ r i ) ≤ k ( x 1 ∨ x 2 ∨ r 1 ) ∧ ( ¬ x 1 ∨ x 2 ∨ r 2 ) ∧ ( x 1 ∨ ¬ x 2 ∨ r 3 ) ∧ ( ¬ x 1 ∨ ¬ x 2 ∨ r 4 )

  6. w i r i . . . . . . . . . . . . . . . . MaxSAT Unsat Cardinality Constraint k PB Constraint . . . . . . . . . . . . . Minimize k (Weighted MaxSAT) . . . . . . . . . . . ( x 1 ∨ x 2 ) ∧ w 1 ( ¬ x 1 ∨ x 2 ) ∧ w 2 ( x 1 ∨ ¬ x 2 ) ∧ w 3 ( ¬ x 1 ∨ ¬ x 2 ) w 4 ( ∑ r i ) ≤ k ( x 1 ∨ x 2 ∨ r 1 ) ∧ ( ¬ x 1 ∨ x 2 ∨ r 2 ) ∧ ( x 1 ∨ ¬ x 2 ∨ r 3 ) ∧ ( ¬ x 1 ∨ ¬ x 2 ∨ r 4 )

  7. . . . . . . . . . . . . . . . . MaxSAT Unsat r i k Cardinality Constraint PB Constraint . . . . . . . . . . . . . Minimize k (Weighted MaxSAT) . . . . . . . . . . . ( x 1 ∨ x 2 ) ∧ w 1 ( ¬ x 1 ∨ x 2 ) ∧ w 2 ( x 1 ∨ ¬ x 2 ) ∧ w 3 ( ¬ x 1 ∨ ¬ x 2 ) w 4 ( x 1 ∨ x 2 ∨ r 1 ) ∧ ( ¬ x 1 ∨ x 2 ∨ r 2 ) ∧ ( ∑ w i · r i ) ≤ k ( x 1 ∨ ¬ x 2 ∨ r 3 ) ∧ ( ¬ x 1 ∨ ¬ x 2 ∨ r 4 )

  8. For many applications it may be desirable to fjnd a good solution (even if suboptimal) very quickly. That’s where incomplete solvers . . . . . . . . . . . . . . . . Motivation for MaxSAT come into play! Our contributions Weight relaxation based approximation . . . . . . . . . . . . . . . . . . . . . Subproblem minimization based approximation . . . ▶ Operations Research ▶ Logistics ▶ Resource Allocation ▶ Computational Biology ▶ Fault Localization ▶ ... and many more

  9. That’s where incomplete solvers . . . . . . . . . . . . . . . . Motivation for MaxSAT For many applications it may be desirable to fjnd a good solution come into play! Our contributions Weight relaxation based approximation . . . . . . . . . . . . . . . . . . . . . Subproblem minimization based approximation . . . ▶ Operations Research ▶ Logistics ▶ Resource Allocation ▶ Computational Biology ▶ Fault Localization ▶ ... and many more (even if suboptimal) very quickly.

  10. . . . . . . . . . . . . . . . . Motivation for MaxSAT For many applications it may be desirable to fjnd a good solution come into play! Our contributions Weight relaxation based approximation . . . . . . . . . . . . . . . . . . . . Subproblem minimization based approximation . . . . ▶ Operations Research ▶ Logistics ▶ Resource Allocation ▶ Computational Biology ▶ Fault Localization ▶ ... and many more (even if suboptimal) very quickly. That’s where incomplete solvers

  11. . . . . . . . . . . . . . . . . . Motivation for MaxSAT For many applications it may be desirable to fjnd a good solution come into play! Our contributions . . . . . . . . . . . . . . . . . . . . . . . ▶ Operations Research ▶ Logistics ▶ Resource Allocation ▶ Computational Biology ▶ Fault Localization ▶ ... and many more (even if suboptimal) very quickly. That’s where incomplete solvers ▶ Weight relaxation based approximation ▶ Subproblem minimization based approximation

  12. . l . . . . . . . . . . GTE for Pseudo-Boolean Constraints a . l a l l a o o o o Worst case exponential size (e.g., weights ) . . . . . . . . . . . . . . . . . Polynomial size encoding when all the weights are same. . . . . . . . . . . . ( O : o 2 , o 3 , o 5 , o 6 , o 8 , o 9 , o 11 : 11) ( A : a 2 , a 3 , a 5 : 5) ( B : b 3 , b 6 : 6) ( C : l 1 : 2) ( D : l 2 : 3) ( E : l 3 : 3) ( F : l 4 : 3) ▶ Encoding 2 l 1 + 3 l 2 + 3 l 3 + 3 l 4

  13. . . . . . . . . . . . . GTE for Pseudo-Boolean Constraints . l a l l a o o o o Worst case exponential size (e.g., weights ) . . . . . . . . . . . . . . . Polynomial size encoding when all the weights are same. . . . . . . . . . . . . ( O : o 2 , o 3 , o 5 , o 6 , o 8 , o 9 , o 11 : 11) ( A : a 2 , a 3 , a 5 : 5) ( B : b 3 , b 6 : 6) ( C : l 1 : 2) ( D : l 2 : 3) ( E : l 3 : 3) ( F : l 4 : 3) ▶ Encoding 2 l 1 + 3 l 2 + 3 l 3 + 3 l 4 ▶ ( ¬ l 1 ∨ a 2 )

  14. . . . . . . . . . . . . GTE for Pseudo-Boolean Constraints . l a l l a o o o o Worst case exponential size (e.g., weights ) . . . . . . . . . . . . . . . Polynomial size encoding when all the weights are same. . . . . . . . . . . . . ( O : o 2 , o 3 , o 5 , o 6 , o 8 , o 9 , o 11 : 11) ( A : a 2 , a 3 , a 5 : 5) ( B : b 3 , b 6 : 6) ( C : l 1 : 2) ( D : l 2 : 3) ( E : l 3 : 3) ( F : l 4 : 3) ▶ Encoding 2 l 1 + 3 l 2 + 3 l 3 + 3 l 4 ▶ ( ¬ l 1 ∨ a 2 )

  15. . . . . . . . . . . . . . . GTE for Pseudo-Boolean Constraints l l a o o o o Worst case exponential size (e.g., weights ) . . . . . . . . . . . . . . Polynomial size encoding when all the weights are same. . . . . . . . . . . . . ( O : o 2 , o 3 , o 5 , o 6 , o 8 , o 9 , o 11 : 11) ( A : a 2 , a 3 , a 5 : 5) ( B : b 3 , b 6 : 6) ( C : l 1 : 2) ( D : l 2 : 3) ( E : l 3 : 3) ( F : l 4 : 3) ▶ Encoding 2 l 1 + 3 l 2 + 3 l 3 + 3 l 4 ▶ ( ¬ l 1 ∨ a 2 ) ∧ ( ¬ l 2 ∨ a 3 )

  16. . . . . . . . . . . . . . . GTE for Pseudo-Boolean Constraints l l a o o o o Worst case exponential size (e.g., weights ) . . . . . . . . . . . . . . Polynomial size encoding when all the weights are same. . . . . . . . . . . . . ( O : o 2 , o 3 , o 5 , o 6 , o 8 , o 9 , o 11 : 11) ( A : a 2 , a 3 , a 5 : 5) ( B : b 3 , b 6 : 6) ( C : l 1 : 2) ( D : l 2 : 3) ( E : l 3 : 3) ( F : l 4 : 3) ▶ Encoding 2 l 1 + 3 l 2 + 3 l 3 + 3 l 4 ▶ ( ¬ l 1 ∨ a 2 ) ∧ ( ¬ l 2 ∨ a 3 )

  17. . . . . . . . . . . . . . . . GTE for Pseudo-Boolean Constraints o o o o Worst case exponential size (e.g., weights ) . . . . . . . . . . . . . . . . . . . . . . Polynomial size encoding when all the weights are same. . . . ( O : o 2 , o 3 , o 5 , o 6 , o 8 , o 9 , o 11 : 11) ( A : a 2 , a 3 , a 5 : 5) ( B : b 3 , b 6 : 6) ( C : l 1 : 2) ( D : l 2 : 3) ( E : l 3 : 3) ( F : l 4 : 3) ▶ Encoding 2 l 1 + 3 l 2 + 3 l 3 + 3 l 4 ▶ ( ¬ l 1 ∨ a 2 ) ∧ ( ¬ l 2 ∨ a 3 ) ∧ ( ¬ l 1 ∨ ¬ l 2 ∨ a 5 )

  18. . . . . . . . . . . . . . . . GTE for Pseudo-Boolean Constraints o o o o Worst case exponential size (e.g., weights ) . . . . . . . . . . . . . . . . . . . . . . Polynomial size encoding when all the weights are same. . . . ( O : o 2 , o 3 , o 5 , o 6 , o 8 , o 9 , o 11 : 11) ( A : a 2 , a 3 , a 5 : 5) ( B : b 3 , b 6 : 6) ( C : l 1 : 2) ( D : l 2 : 3) ( E : l 3 : 3) ( F : l 4 : 3) ▶ Encoding 2 l 1 + 3 l 2 + 3 l 3 + 3 l 4 ▶ ( ¬ l 1 ∨ a 2 ) ∧ ( ¬ l 2 ∨ a 3 ) ∧ ( ¬ l 1 ∨ ¬ l 2 ∨ a 5 ) . . .

  19. . . . . . . . . . . . . . . . . . GTE for Pseudo-Boolean Constraints Worst case exponential size (e.g., weights ) . . . . . . . . . . . . . . . . . . Polynomial size encoding when all the weights are same. . . . . . ( O : o 2 , o 3 , o 5 , o 6 , o 8 , o 9 , o 11 : 11) ( A : a 2 , a 3 , a 5 : 5) ( B : b 3 , b 6 : 6) ( C : l 1 : 2) ( D : l 2 : 3) ( E : l 3 : 3) ( F : l 4 : 3) ▶ Encoding 2 l 1 + 3 l 2 + 3 l 3 + 3 l 4 ≤ 5 ▶ ( ¬ l 1 ∨ a 2 ) ∧ ( ¬ l 2 ∨ a 3 ) ∧ ( ¬ l 1 ∨ ¬ l 2 ∨ a 5 ) . . . ¬ o 6 ∧ ¬ o 8 ∧ ¬ o 9 ∧ ¬ o 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend