announcements
play

Announcements Assignment 4 due today. Assignment 5 uploaded to - PowerPoint PPT Presentation

Announcements Assignment 4 due today. Assignment 5 uploaded to website and Piazza. Will be due in two weeks, May 12th. No class next week, May 5th. Last lecture will be May 12th. Assignment 6 will be optional (see next slide). We will meet


  1. Announcements Assignment 4 due today. Assignment 5 uploaded to website and Piazza. Will be due in two weeks, May 12th. No class next week, May 5th. Last lecture will be May 12th. Assignment 6 will be optional (see next slide). We will meet again for Final Assessment on May 29.

  2. HW Adjustments Options for improving your grade: 1) On an assignment where you have done poorly, you can correct the problems, and receive half the points back. AND/OR 2) You can turn in the optional assignment 6 and its grade will replace your lowest grade.

  3. Gravitational Wave Data Analysis Lecture 5: Gravitational Waves MSc Course

  4. Crucial problem: How to extract a GW signal from the (typically) much larger detector noise? Key components: 1. Characterizing detector noise 2. Understanding detectors’ angular sensitivity 3. Applying filtering techniques

  5. Output of GW detector Signal Input of detector has the form h ( t ) = D ij h ij ( t ) is the detector tensor; depends on detector geometry. D ij Signal Output of detector is related to input by ˜ h out = T ( f )˜ h ( f ) is the transfer function. T ( f ) However, output of any real detector will have noise, so output will really be given by s out ( t ) = h out ( t ) + n out ( t ) s ( t ) = h ( t ) + n ( t )

  6. Detector noise To compare detector performances, we use the detectors’ noise . n ( t ) If noise is stationary, then the different Fourier components are uncorrelated. Then the ensemble average of the Fourier components of the noise is of the form: n ( f 0 ) i = δ ( f � f 0 )1 n ⇤ ( f )˜ h ˜ 2 S n ( f ) Ensemble average can be replaced by time average to give the variance of the noise: = 1 ∆ f = 1 D n ( f ) | 2 E | ˜ 2 S n ( f ) T T T is time of experiment.

  7. Noise spectral density is the noise spectral density (aka noise spectral S n ( f ) sensitivity or noise power spectrum): Z ∞ n 2 ( t ) ⌦ ↵ = f S n ( f ) d 0

  8. <latexit sha1_base64="PRqpX5dwbv7a89bL5dfJ/SeViI=">AB7nicbVBNS8NAEJ34WetX1aOXxSJ4KCUpgl6EohePFewHtKFstpN26WYTdjdCf0RXjwo4tXf481/47bNQVsfDzem2FmXpAIro3rfjtr6xubW9uFneLu3v7BYenouKXjVDFsljEqhNQjYJLbBpuBHYShTQKBLaD8d3Mbz+h0jyWj2aSoB/RoeQhZ9RYqU0rwY1XqfVLZbfqzkFWiZeTMuRo9EtfvUHM0gilYJq3fXcxPgZVYzgdNiL9WYUDamQ+xaKmE2s/m507JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeG1n3GZpAYlWywKU0FMTGa/kwFXyIyYWEKZ4vZWwkZUWZsQkUbgrf8ip1aqeW/UeLsv12zyOApzCGVyAB1dQh3toQBMYjOEZXuHNSZwX5935WLSuOfnMCfyB8/kDs1eOew=</latexit> <latexit sha1_base64="PRqpX5dwbv7a89bL5dfJ/SeViI=">AB7nicbVBNS8NAEJ34WetX1aOXxSJ4KCUpgl6EohePFewHtKFstpN26WYTdjdCf0RXjwo4tXf481/47bNQVsfDzem2FmXpAIro3rfjtr6xubW9uFneLu3v7BYenouKXjVDFsljEqhNQjYJLbBpuBHYShTQKBLaD8d3Mbz+h0jyWj2aSoB/RoeQhZ9RYqU0rwY1XqfVLZbfqzkFWiZeTMuRo9EtfvUHM0gilYJq3fXcxPgZVYzgdNiL9WYUDamQ+xaKmE2s/m507JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeG1n3GZpAYlWywKU0FMTGa/kwFXyIyYWEKZ4vZWwkZUWZsQkUbgrf8ip1aqeW/UeLsv12zyOApzCGVyAB1dQh3toQBMYjOEZXuHNSZwX5935WLSuOfnMCfyB8/kDs1eOew=</latexit> <latexit sha1_base64="PRqpX5dwbv7a89bL5dfJ/SeViI=">AB7nicbVBNS8NAEJ34WetX1aOXxSJ4KCUpgl6EohePFewHtKFstpN26WYTdjdCf0RXjwo4tXf481/47bNQVsfDzem2FmXpAIro3rfjtr6xubW9uFneLu3v7BYenouKXjVDFsljEqhNQjYJLbBpuBHYShTQKBLaD8d3Mbz+h0jyWj2aSoB/RoeQhZ9RYqU0rwY1XqfVLZbfqzkFWiZeTMuRo9EtfvUHM0gilYJq3fXcxPgZVYzgdNiL9WYUDamQ+xaKmE2s/m507JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeG1n3GZpAYlWywKU0FMTGa/kwFXyIyYWEKZ4vZWwkZUWZsQkUbgrf8ip1aqeW/UeLsv12zyOApzCGVyAB1dQh3toQBMYjOEZXuHNSZwX5935WLSuOfnMCfyB8/kDs1eOew=</latexit> <latexit sha1_base64="PRqpX5dwbv7a89bL5dfJ/SeViI=">AB7nicbVBNS8NAEJ34WetX1aOXxSJ4KCUpgl6EohePFewHtKFstpN26WYTdjdCf0RXjwo4tXf481/47bNQVsfDzem2FmXpAIro3rfjtr6xubW9uFneLu3v7BYenouKXjVDFsljEqhNQjYJLbBpuBHYShTQKBLaD8d3Mbz+h0jyWj2aSoB/RoeQhZ9RYqU0rwY1XqfVLZbfqzkFWiZeTMuRo9EtfvUHM0gilYJq3fXcxPgZVYzgdNiL9WYUDamQ+xaKmE2s/m507JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeG1n3GZpAYlWywKU0FMTGa/kwFXyIyYWEKZ4vZWwkZUWZsQkUbgrf8ip1aqeW/UeLsv12zyOApzCGVyAB1dQh3toQBMYjOEZXuHNSZwX5935WLSuOfnMCfyB8/kDs1eOew=</latexit> Detector Pattern Functions Polarization tensors where are orthogonal to u , ˆ ˆ v propagation direction e + ij (ˆ n ) = ˆ u i ˆ u j − ˆ v i ˆ v j e × ij (ˆ n ) = ˆ u i ˆ v j + ˆ v i ˆ u j In the frame where is along the direction, we ˆ ˆ n z can choose v = ˆ ˆ u = ˆ ˆ y x  0 �  1 � 1 0 e + e × ab = ab = 1 0 0 − 1 ab ab in the ( x,y ) plane a, b = 1 , 2

  9. Detector Pattern Functions GW with given propagation direction is given by ˆ n Z ∞ f ˜ X e A h A ( f ) e − 2 π if ( t − ˆ n · x /c ) h ij ( t, x ) = ij (ˆ n ) d −∞ A =+ , × Z ∞ f ˜ X e A h A ( f ) e − 2 π ift h ij ( t ) = ij (ˆ n ) d −∞ A =+ , × X e A = ij (ˆ n ) h A ( t ) A =+ , × Fold in the detector tensor: h ( t ) = D ij h ij ( t ) X D ij e A h ( t ) = ij (ˆ n ) h A ( t ) A =+ , ×

  10. <latexit sha1_base64="3ZVUlLjW9gW3gsKhdBXR7WghzSw=">ACFHicbVBNS8NAEN34bf2KevSyWATFUhIRFLwUBfGoYKvQhLZTpqlmw92J0IJ/RFe/CtePCji1YM3/43bNge/Hgw83pthZl6QSaHRcT6tqemZ2bn5hcXK0vLK6pq9vtHSa4NHkqU3UbMA1SJNBEgRJuMwUsDiTcBP2zkX9zB0qLNLnGQZ+zHqJCAVnaKSOvX/eKfZrHoY9NCTEOIu9TACZDUvi8SJl2lBPSV6Ee517KpTd8agf4lbkiopcdmxP7xuyvMYEuSad12nQz9gikUXMKw4uUaMsb7rAdtQxNmjvCL8VNDumOULg1TZSpBOla/TxQs1noQB6YzZhjp395I/M9r5xge+4VIshwh4ZNFYS4pnSUEO0KBRzlwBDGlTC3Uh4xTiaHCsmBPf3y39J6DuOnX36rDaOC3jWCBbZJvsEpckQa5IJekSTi5J4/kmbxYD9aT9Wq9TVqnrHJmk/yA9f4Fuomd+w=</latexit> <latexit sha1_base64="3ZVUlLjW9gW3gsKhdBXR7WghzSw=">ACFHicbVBNS8NAEN34bf2KevSyWATFUhIRFLwUBfGoYKvQhLZTpqlmw92J0IJ/RFe/CtePCji1YM3/43bNge/Hgw83pthZl6QSaHRcT6tqemZ2bn5hcXK0vLK6pq9vtHSa4NHkqU3UbMA1SJNBEgRJuMwUsDiTcBP2zkX9zB0qLNLnGQZ+zHqJCAVnaKSOvX/eKfZrHoY9NCTEOIu9TACZDUvi8SJl2lBPSV6Ee517KpTd8agf4lbkiopcdmxP7xuyvMYEuSad12nQz9gikUXMKw4uUaMsb7rAdtQxNmjvCL8VNDumOULg1TZSpBOla/TxQs1noQB6YzZhjp395I/M9r5xge+4VIshwh4ZNFYS4pnSUEO0KBRzlwBDGlTC3Uh4xTiaHCsmBPf3y39J6DuOnX36rDaOC3jWCBbZJvsEpckQa5IJekSTi5J4/kmbxYD9aT9Wq9TVqnrHJmk/yA9f4Fuomd+w=</latexit> <latexit sha1_base64="3ZVUlLjW9gW3gsKhdBXR7WghzSw=">ACFHicbVBNS8NAEN34bf2KevSyWATFUhIRFLwUBfGoYKvQhLZTpqlmw92J0IJ/RFe/CtePCji1YM3/43bNge/Hgw83pthZl6QSaHRcT6tqemZ2bn5hcXK0vLK6pq9vtHSa4NHkqU3UbMA1SJNBEgRJuMwUsDiTcBP2zkX9zB0qLNLnGQZ+zHqJCAVnaKSOvX/eKfZrHoY9NCTEOIu9TACZDUvi8SJl2lBPSV6Ee517KpTd8agf4lbkiopcdmxP7xuyvMYEuSad12nQz9gikUXMKw4uUaMsb7rAdtQxNmjvCL8VNDumOULg1TZSpBOla/TxQs1noQB6YzZhjp395I/M9r5xge+4VIshwh4ZNFYS4pnSUEO0KBRzlwBDGlTC3Uh4xTiaHCsmBPf3y39J6DuOnX36rDaOC3jWCBbZJvsEpckQa5IJekSTi5J4/kmbxYD9aT9Wq9TVqnrHJmk/yA9f4Fuomd+w=</latexit> <latexit sha1_base64="3ZVUlLjW9gW3gsKhdBXR7WghzSw=">ACFHicbVBNS8NAEN34bf2KevSyWATFUhIRFLwUBfGoYKvQhLZTpqlmw92J0IJ/RFe/CtePCji1YM3/43bNge/Hgw83pthZl6QSaHRcT6tqemZ2bn5hcXK0vLK6pq9vtHSa4NHkqU3UbMA1SJNBEgRJuMwUsDiTcBP2zkX9zB0qLNLnGQZ+zHqJCAVnaKSOvX/eKfZrHoY9NCTEOIu9TACZDUvi8SJl2lBPSV6Ee517KpTd8agf4lbkiopcdmxP7xuyvMYEuSad12nQz9gikUXMKw4uUaMsb7rAdtQxNmjvCL8VNDumOULg1TZSpBOla/TxQs1noQB6YzZhjp395I/M9r5xge+4VIshwh4ZNFYS4pnSUEO0KBRzlwBDGlTC3Uh4xTiaHCsmBPf3y39J6DuOnX36rDaOC3jWCBbZJvsEpckQa5IJekSTi5J4/kmbxYD9aT9Wq9TVqnrHJmk/yA9f4Fuomd+w=</latexit> Detector Pattern Functions Detector pattern functions depend on the direction of propagation of the wave. n = ( θ , φ ) ˆ n ) = D ij e A F A (ˆ ij (ˆ n ) h ( t ) = h + ( t ) F + ( θ , φ ) + h × ( t ) F × ( θ , φ ) Generic case: F + , × ( θ , φ ; ψ )

  11. Detector Pattern Functions h ( t ) = h + ( t ) F + ( θ , φ ) + h × ( t ) F × ( θ , φ ) GWs have two polarizations called + and x. F x F rms F + Detectors are not omnidirectional but exhibit an antenna pattern. Credit: T. Fricke

  12. Interferometric GW Detector Pattern Functions F + ( θ , φ ; ψ = 0) = 1 1 + cos 2 θ � � cos 2 φ 2 F × ( θ , φ ; ψ = 0) = cos θ sin 2 φ Thus GW interferometers have blind directions. For instance, for a GW with plus polarization, y and φ = π / 4 F + = 0 x This wave produces the same displacement in the and arm. y x Differential phase shift vanishes!

  13. Finding signals The detector output will be of the general form s ( t ) = h ( t ) + n ( t ) Naively, we can detect a GW signal only when is larger than | h ( t ) | | n ( t ) | But we will rather be in the situation | h ( t ) | ⌧ | n ( t ) |

  14. Fundamental question: How can we dig out the GW signal from a much larger noise? Answer: We can detect values of much smaller h ( t ) than the floor of the noise if we know, at least to some level of accuracy, the form of . h ( t ) s ( t ) = h ( t ) + n ( t ) Z T Z T Z T 1 dt s ( t ) h ( t ) = 1 dt h 2 ( t ) + 1 dt n ( t ) h ( t ) T T T 0 0 0 Z T Z T ⌘ 1 / 2 1 1 ⇣ τ 0 dt h 2 ( t ) ∼ h 2 dt n ( t ) h ( t ) ∼ n 0 h 0 0 T T T 0 0

  15. Fundamental question: How can we dig out the GW signal from a much larger noise? Z T ⌘ 1 / 2 1 ⇣ τ 0 dt n ( t ) h ( t ) ∼ n 0 h 0 T T 0 Goes to zero for large T! Thus, it is not necessary to have . h 0 > n 0 It is sufficient to have . h 0 > ( τ 0 /T ) 1 / 2 n 0

  16. Let’s turn the previous procedure into a method we can use... Goal : Obtain the highest possible signal-to-noise ratio (SNR). Z ∞ s = ˆ dt s ( t ) K ( t ) −∞ Consider as a generic filter function. K ( t ) If we know the form of , what is the filter function h ( t ) K ( t ) that maximizes the SNR? Aka matched filtering

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend